The causes of Pseudomonas diversity.

The genus Pseudomonas encompasses arguably the most diverse and ecologically significant group of bacteria on the planet. Members of the genus are found in large numbers in all of the major natural environments (terrestrial, freshwater and marine) and also form intimate associations with plants and animals. This universal distribution suggests a remarkable degree of physiological and genetic adaptability.

[1]  T. Johnson,et al.  The evolution of mutation rates: separating causes from consequences , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  H. Kasai,et al.  Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. , 2000, Microbiology.

[3]  J. Klockgether,et al.  Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. , 2000, Microbiology.

[4]  G. Sundin,et al.  Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. , 2000, Microbiology.

[5]  G. Bell,et al.  Diversity peaks at intermediate productivity in a laboratory microcosm , 2000, Nature.

[6]  Carl T. Bergstrom,et al.  Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Buckling,et al.  The emergence and maintenance of diversity: insights from experimental bacterial populations. , 2000, Trends in ecology & evolution.

[8]  B. Tümmler,et al.  Sequence Diversity of Pseudomonas aeruginosa: Impact on Population Structure and Genome Evolution , 2000, Journal of bacteriology.

[9]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[10]  P. Rainey,et al.  When Being Hyper Keeps You Fit , 2000, Science.

[11]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[12]  K. van Dijk,et al.  The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Daniel E Rozen,et al.  Long‐Term Experimental Evolution in Escherichia coli. VIII. Dynamics of a Balanced Polymorphism , 2000, The American Naturalist.

[14]  J. Lawrence,et al.  Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. , 1999, Current opinion in genetics & development.

[15]  G. Tsiamis,et al.  Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[17]  A. Zehnder,et al.  Int-B13, an Unusual Site-Specific Recombinase of the Bacteriophage P4 Integrase Family, Is Responsible for Chromosomal Insertion of the 105-Kilobase clc Element ofPseudomonas sp. Strain B13 , 1998, Journal of bacteriology.

[18]  Michael Travisano,et al.  Adaptive radiation in a heterogeneous environment , 1998, Nature.

[19]  J. Adams,et al.  Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. , 1998, Molecular biology and evolution.

[20]  E. Jablonka,et al.  'Lamarckian' mechanisms in darwinian evolution. , 1998, Trends in ecology & evolution.

[21]  B. Tümmler,et al.  Structural and functional implications of sequence diversity of Pseudomonas aeruginosa genes oriC, ampC and fliC , 1998, Electrophoresis.

[22]  A. Álvarez-Morales,et al.  Physical map of the chromosome of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola. , 1998, Microbiology.

[23]  B. Haubold,et al.  Genetic and ecotypic structure of a fluorescent Pseudomonas population , 1996 .

[24]  R. Lenski,et al.  Tests of Ecological Mechanisms Promoting the Stable Coexistence of Two Bacterial Genotypes , 1996 .

[25]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[26]  P. Rainey,et al.  Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome , 1996, Molecular microbiology.

[27]  B. Tümmler,et al.  Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats , 1996, Journal of bacteriology.

[28]  D. Schluter Experimental Evidence That Competition Promotes Divergence in Adaptive Radiation , 1994, Science.

[29]  P. Rainey,et al.  Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. , 1994, Microbiology.

[30]  R. Rosenzweig,et al.  Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. , 1994, Genetics.

[31]  M. Nowak,et al.  Adaptive evolution of highly mutable loci in pathogenic bacteria , 1994, Current Biology.

[32]  R. Redfield Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. , 1993, The Journal of heredity.

[33]  B. Tümmler,et al.  Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains , 1988, Journal of clinical microbiology.

[34]  P. Abrams Alternative Models of Character Displacement and Niche Shift. 2. Displacement when There is Competition for a Single Resource , 1987, The American Naturalist.

[35]  P. Abrams ALTERNATIVE MODELS OF CHARACTER DISPLACEMENT AND NICHE SHIFT. I. ADAPTIVE SHIFTS IN RESOURCE USE WHEN THERE IS COMPETITION FOR NUTRITIONALLY NONSUBSTITUTABLE RESOURCES , 1987, Evolution; international journal of organic evolution.

[36]  Leigh Eg,et al.  The evolution of mutation rates. , 1973 .

[37]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[38]  G. Hardin The competitive exclusion principle. , 1960, Science.

[39]  P. J. Hughesdon,et al.  The Struggle for Existence , 1927, Nature.

[40]  W. E. Ritter AS TO THE CAUSES OF EVOLUTION. , 1923, Science.

[41]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[42]  B. Tümmler,et al.  Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. , 1997, International journal of systematic bacteriology.

[43]  E. Leigh,et al.  The evolution of mutation rates. , 1973, Genetics.

[44]  H. Berger,et al.  Selective allele loss in mixed infections with T4 bacteriophage. , 1973, Genetics.

[45]  K. Atwood,et al.  Selective mechanisms in bacteria. , 1951, Cold Spring Harbor symposia on quantitative biology.

[46]  G. Gauze The struggle for existence, by G. F. Gause. , 1934 .

[47]  N. Pierce Origin of Species , 1914, Nature.