Tracing site‐specific isotopic signatures along a Blue Tit Cyanistes caeruleus food chain

Food chains culminating with temperate insectivorous passerines are well described, yet whether trophic webs can be site-specific remains a largely unexplored question. In the case of site- or habitat-specificity of food webs, stable isotope signatures of bird feathers may enable assignment of unmarked individuals to a site or a habitat of origin. We address this question in landscapes that include contrasting forest habitat patches with either deciduous Downy Oak Quercus humilis or evergreen Holm Oak Quercus ilex as dominant tree species. First, we examine the spatial variation across habitats and sites in the stable isotope ratios of carbon (d13C) and nitrogen (d15N) along the oak leaf-Tortrix moth Tortrix viridana caterpillar-Blue Tit Cyanistes caeruleus food chain. Secondly, we assess whether the isotopic signatures allow for correct assignment of individual birds to their site or habitat of origin. At the scale of the landscape, stable isotope values enabled identification of the different components of the Blue Tit food chain: from oak leaves to Blue Tit nestlings and yearling birds. However, isotopic signatures were site-specific (i.e. geographical) more than habitat-specific (i.e. deciduous vs. evergreen oaks). Discriminant analyses correctly assigned 85% of nestlings and 83% of resident yearling birds, indicating a pronounced effect of site on Blue Tit feather isotopic signatures. We thereby demonstrate that isotopes reflect a stronger association of locally born birds to the local features of their habitat than that of un-ringed yearling birds, whose plumage may have grown while in a wider geographical area. This study provides evidence of site-specific isotopic signatures from oak leaves to Blue Tit feathers at a fine spatial scale.

[1]  J. Blondel,et al.  Selection-Based Biodiversity at a Small Spatial Scale in a Low-Dispersing Insular Bird. , 1999, Science.

[2]  K. Hobson Using stable isotopes to trace long‐distance dispersal in birds and other taxa , 2005 .

[3]  B. Graham,et al.  Using Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic Ecosystems , 2010 .

[4]  J. Rosenheim,et al.  Isotopic enrichment in herbivorous insects: a comparative field-based study of variation , 2005, Oecologia.

[5]  P. Templer,et al.  Stable Isotopes in Plant Ecology , 2002 .

[6]  R. Furness,et al.  Techniques to link individual migration patterns of seabirds with diet specialization, condition and breeding performance , 2006 .

[7]  F. Rousset Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. , 1997, Genetics.

[8]  N. Gross,et al.  Habitat quality as a predictor of spatial variation in blue tit reproductive performance: a multi-plot analysis in a heterogeneous landscape , 2004, Oecologia.

[9]  D. Lack,et al.  Ecological adaptations for breeding in birds , 1969 .

[10]  JACQUES BLONDEL,et al.  A Thirty-Year Study of Phenotypic and Genetic Variation of Blue Tits in Mediterranean Habitat Mosaics , 2006 .

[11]  M. Vanderklift,et al.  Sources of variation in consumer-diet δ15N enrichment: a meta-analysis , 2003, Oecologia.

[12]  K. Hobson,et al.  Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (δ13C, δ15N and δD) as environmental tracers , 2011 .

[13]  Marcel M. Lambrechts,et al.  The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus , 2004 .

[14]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[15]  J. Smol,et al.  Arctic Seabirds Transport Marine-Derived Contaminants , 2005, Science.

[16]  D. Hoeinghaus,et al.  Can stable isotope ratios provide for community-wide measures of trophic structure? , 2007 .

[17]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[18]  K. Hobson,et al.  Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. , 2006, Rapid communications in mass spectrometry : RCM.

[19]  K. Hobson,et al.  Using stable isotopes to track frugivory in migratory passerines , 2009 .

[20]  J. Nichols,et al.  Chapter 3 Modeling Individual Animal Histories with Multistate Capture–Recapture Models , 2009 .

[21]  J. Arnould,et al.  Stable isotopes reveal inter-annual and inter-individual variation in the diet of female Australian fur seals , 2011 .

[22]  J. Blondel,et al.  Food handling time of Blue Tit chicks : constraints and adaptation to different prey types , 1999 .

[23]  R T Holmes,et al.  Linking Breeding and Wintering Ranges of a Migratory Songbird Using Stable Isotopes , 2002, Science.

[24]  S. Rambal,et al.  Between-tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability , 1997, Oecologia.

[25]  F. Ramírez,et al.  Insights into the spatiotemporal component of feeding ecology: an isotopic approach for conservation management sciences , 2011 .

[26]  C. Gratton,et al.  Stable isotopes reveal different patterns of inter‐crop dispersal in two ladybeetle species , 2011 .

[27]  D. Post,et al.  The long and short of food-chain length , 2002 .

[28]  P. Henry,et al.  Climate impacts on Mediterranean blue tit survival: an investigation across seasons and spatial scales , 2006 .

[29]  K. Hobson,et al.  Tracking large carnivore dispersal using isotopic clues in claws: an application to cougars across the Great Plains , 2011 .

[30]  K. Hobson Tracing origins and migration of wildlife using stable isotopes: a review , 1999, Oecologia.

[31]  A. C. James,et al.  On the Use of Stable Isotopes in Trophic Ecology , 2011 .

[32]  Pierre Taberlet,et al.  Landscape genetics: combining landscape ecology and population genetics , 2003 .

[33]  D. Post,et al.  Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses , 2007, Oecologia.

[34]  G. Graves,et al.  Stable isotope signature of philopatry and dispersal in a migratory songbird , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Eggett,et al.  Using stable isotopes to unravel and predict the origins of great cormorants (Phalacrocorax carbo sinensis) overwintering at Kinmen. , 2008, Rapid communications in mass spectrometry : RCM.

[36]  Christopher M. Perrins,et al.  Population fluctuations and clutch size in the Great tit , 1965 .

[37]  L. Jenni,et al.  Moult and Ageing of European Passerines , 1994 .

[38]  A. Dervieux,et al.  Feeding ecology and life history variation of the blue tit in Mediterranean deciduous and sclerophyllous habitats , 1991, Oecologia.

[39]  S. Jarvis,et al.  Preliminary studies of the impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotopic discrimination , 2004, Plant and Soil.

[40]  K. Hobson,et al.  Using stable isotopes to study resource acquisition and allocation in procellariiform seabirds , 2005, Oecologia.

[41]  C. Kendall,et al.  Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur , 2003 .

[42]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[43]  J. Blondel,et al.  Nestling diet variation in an insular Mediterranean population of blue tits Parus caeruleus: effects of years, territories and individuals , 1994, Oecologia.

[44]  J. Kelly,et al.  Tracking migrant songbirds with stable isotopes. , 1998, Trends in ecology & evolution.

[45]  G. Likens,et al.  Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors , 2005 .

[46]  S. Hinsley,et al.  FEEDING ECOLOGY OF GREAT TITS (PARUS MAJOR) AND BLUE TITS (PARUS CAERULEUS), BREEDING IN SUBURBAN GARDENS , 1988 .

[47]  D. Hoeinghaus,et al.  Can stable isotope ratios provide for community-wide measures of trophic structure? Comment. , 2008, Ecology.

[48]  D. Garant,et al.  Habitat-linked population genetic differentiation in the blue tit Cyanistes caeruleus. , 2012, The Journal of heredity.

[49]  J. Tinbergen,et al.  Parental energy expenditure during brood rearing in the Great Tit (Parus major) in relation to body mass, temperature, food availability and clutch size , 1994 .

[50]  D. Lack The natural regulation of animal numbers , 1954 .

[51]  B. Peterson,et al.  STABLE ISOTOPES IN ECOSYSTEM STUDIES , 1987 .

[52]  B. Kempenaers,et al.  The Condition‐Dependent Development of Carotenoid‐Based and Structural Plumage in Nestling Blue Tits: Males and Females Differ , 2007, The American Naturalist.

[53]  D. Garant,et al.  Determinants of population genetic structure in eastern Chipmunks (Tamias striatus): the role of landscape barriers and sex-biased dispersal. , 2010, The Journal of heredity.