Ontologies for Machine Learning

The growing amounts of ontologies and semantically annotated data has led to considerable interest in mining these richly structured data sources. While research has actively addressed the issue of inducing semantic structures from conventional types of data, approaches for mining semantically annotated data still constitute an emerging field of research. Approaches in this direction either investigate how semantic structures can help to advance classical Machine Learning tasks or how semantic structures can themselves become the objects of interest. In this chapter, we review some of the main topics at the intersection of Machine Learning and Semantic Web research.

[1]  Amit P. Sheth,et al.  Discovering informative connection subgraphs in multi-relational graphs , 2005, SKDD.

[2]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[3]  Dunja Mladenic,et al.  Visualization of Text Document Corpus , 2005, Informatica.

[4]  Manuel de Buenaga Rodríguez,et al.  Using WordNet to Complement Training Information in Text Categorization , 1997, ArXiv.

[5]  Nicola Fanizzi,et al.  A Declarative Kernel for ALC Concept Descriptions , 2006, ISMIS.

[6]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[7]  Stephan Bloehdorn,et al.  Structure and semantics for expressive text kernels , 2007, CIKM '07.

[8]  Stephan Bloehdorn,et al.  Learning Ontologies to Improve Text Clustering and Classification , 2005, GfKl.

[9]  Saso Dzeroski,et al.  Multi-relational data mining: an introduction , 2003, SKDD.

[10]  Stephan Bloehdorn,et al.  Semantic Kernels for Text Classification Based on Topological Measures of Feature Similarity , 2006, Sixth International Conference on Data Mining (ICDM'06).

[11]  Francesca A. Lisi A Methodology for Building Semantic Web Mining Systems , 2006, ISMIS.

[12]  Jens Lehmann,et al.  Foundations of Refinement Operators for Description Logics , 2007, ILP.

[13]  Luc De Raedt,et al.  Bayesian Logic Programs , 2001, ILP Work-in-progress reports.

[14]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[15]  Andreas Hotho,et al.  A Brief Survey of Text Mining , 2005, LDV Forum.

[16]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[17]  Claudio Carpineto,et al.  FUB at TREC-10 Web Track: A Probabilistic Framework for Topic Relevance Term Weighting , 2001, TREC.

[18]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[19]  Stephan Bloehdorn,et al.  Combined Syntactic and Semantic Kernels for Text Classification , 2007, ECIR.

[20]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[21]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[22]  Michael E. Lesk,et al.  Computer Evaluation of Indexing and Text Processing , 1968, JACM.

[23]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[24]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[25]  Stephen J. Green,et al.  Building Hypertext Links By Computing Semantic Similarity , 1999, IEEE Trans. Knowl. Data Eng..

[26]  Soumen Chakrabarti,et al.  Mining the web - discovering knowledge from hypertext data , 2002 .

[27]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[28]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[29]  Yun Peng,et al.  Finding and Ranking Knowledge on the Semantic Web , 2005, SEMWEB.

[30]  AnHai Doan,et al.  iMAP: Discovering Complex Mappings between Database Schemas. , 2004, SIGMOD 2004.

[31]  Luc De Raedt,et al.  Adaptive Bayesian Logic Programs , 2001, ILP.

[32]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[33]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[34]  James A. Wise The ecological approach to text visualization , 1999 .

[35]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[36]  Stephan Bloehdorn,et al.  The SWRC Ontology - Semantic Web for Research Communities , 2005, EPIA.

[37]  Luis Alfonso Ureña López,et al.  Integrating Linguistic Resources in TC through WSD , 2001, Comput. Humanit..

[38]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[39]  Abraham Bernstein,et al.  Mining Software Repositories with iSPAROL and a Software Evolution Ontology , 2007, Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007).

[40]  Luc De Raedt,et al.  How to Upgrade Propositional Learners to First Order Logic: A Case Study , 2001, Machine Learning and Its Applications.

[41]  Gerhard Weikum,et al.  Word Sense Disambiguation for Exploiting Hierarchical Thesauri in Text Classification , 2005, PKDD.

[42]  Jens Lehmann,et al.  A Refinement Operator Based Learning Algorithm for the ALC Description Logic , 2007, ILP.

[43]  Francesca A. Lisi,et al.  Mining the Semantic Web: A Logic-Based Methodology , 2005, ISMIS.

[44]  Marc Ehrig,et al.  Similarity for Ontologies - A Comprehensive Framework , 2005, ECIS.

[45]  David M. Pennock,et al.  Statistical relational learning for document mining , 2003, Third IEEE International Conference on Data Mining.

[46]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[47]  Renée J. Miller,et al.  Leveraging data and structure in ontology integration , 2007, SIGMOD '07.

[48]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[49]  Steffen Staab,et al.  Ontologies improve text document clustering , 2003, Third IEEE International Conference on Data Mining.

[50]  Steffen Staab,et al.  Explaining Text Clustering Results Using Semantic Structures , 2003, PKDD.

[51]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[52]  Roberto Basili,et al.  A Semantic Kernel to Classify Texts with Very Few Training Examples , 2006, Informatica.

[53]  Stephan Bloehdorn,et al.  Kernel Methods for Mining Instance Data in Ontologies , 2007, ISWC/ASWC.

[54]  Ian Horrocks,et al.  From SHIQ and RDF to OWL: the making of a Web Ontology Language , 2003, J. Web Semant..

[55]  Bettina Hoser,et al.  Analysis of asymmetric communication patterns in computer mediated communication environments , 2010 .

[56]  Martha W. Evens,et al.  Relational thesauri in information retrieval , 1985, J. Am. Soc. Inf. Sci..

[57]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[58]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[59]  Nicola Fanizzi,et al.  A Semantic Similarity Measure for Expressive Description Logics , 2009, ArXiv.

[60]  Yun Peng,et al.  Swoogle: Searching for Knowledge on the Semantic Web , 2005, AAAI.

[61]  Hussein A. Abbass,et al.  A Comparative Study for Domain Ontology Guided Feature Extraction , 2003, ACSC.

[62]  Luc De Raedt,et al.  Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting , 2006, J. Mach. Learn. Res..

[63]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[64]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[65]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[66]  John W. Lloyd Logic for learning - learning comprehensible theories from structured data , 2003, Cognitive Technologies.

[67]  Andreas Abecker,et al.  An Extendable Java Framework for Instance Similarities in Ontologies , 2006, ICEIS.

[68]  Julio Gonzalo,et al.  Indexing with WordNet synsets can improve text retrieval , 1998, WordNet@ACL/COLING.

[69]  Steffen Staab,et al.  An Ontology-based Framework for Text Mining , 2005, LDV Forum.

[70]  Ido Dagan,et al.  Knowledge Discovery in Textual Databases (KDT) , 1995, KDD.

[71]  John W. Lloyd,et al.  Learning Comprehensible Theories from Structured Data , 2002, Machine Learning Summer School.

[72]  Henry Kautz,et al.  Research on Statistical Relational Learning at the University of Washington , 2003 .

[73]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[74]  Andreas Hotho,et al.  Semantic Web Mining: State of the art and future directions , 2006, J. Web Semant..

[75]  Stan Matwin,et al.  Text Classification Using WordNet Hypernyms , 1998, WordNet@ACL/COLING.

[76]  Florence d'Alché-Buc,et al.  Support Vector Machines based on a semantic kernel for text categorization , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[77]  Thomas Gärtner,et al.  Kernels and Distances for Structured Data , 2004, Machine Learning.

[78]  Andreas Hotho,et al.  Semantic Network Analysis of Ontologies , 2006, LWA.

[79]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[80]  Nicola Fanizzi,et al.  A dissimilarity measure for ALC concept descriptions , 2006, SAC '06.

[81]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[82]  Matthew Richardson,et al.  Building large knowledge bases by mass collaboration , 2003, K-CAP '03.

[83]  Stephan Bloehdorn,et al.  Text classification by boosting weak learners based on terms and concepts , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).