Dendrimer photoantenna supermolecules: Energetic funnels, exciton hopping and correlated excimer formation

Abstract A novel set of purely hydrocarbon dendrimer supermolecules has been studied, providing direct evidence of unusual photophysical and photochemical characteristics. The molecular structure gives rise to discrete exciton localization, allowing the formation of a highly photoactive antenna with a discrete energetic funnel. Steady state and fluorescence lifetime measurements have shown rapid and efficient exciton trapping at the molecular locus. Unique geometric and energetic attributes are observed which provide a means of protection from photobleaching, enhancing the longevity of these molecules. In addition, unexpected wavelength-dependent excimer formations are seen, suggesting unusual excitation-induced intermolecular interactions and dimer formations in more than one single excited state.

[1]  R. Grondelle,et al.  On the role of spectral and spatial antenna inhomogeneity in the process of excitation energy trapping in photosynthesis , 1992 .

[2]  R. Pearlstein EXCITON MIGRATION AND TRAPPING IN PHOTOSYNTHESIS , 1982 .

[3]  O. Somsen,et al.  Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna. , 1994, Biophysical journal.

[4]  H. Fozzard,et al.  A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. , 1994, Biophysical journal.

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  Raoul Kopelman,et al.  Near-Field Optical Microscopy, Spectroscopy, and Chemical Sensors , 1994 .

[7]  Jeffrey S. Moore,et al.  Rapid Construction of Large‐size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter , 1993 .

[8]  Sergei Tretiak,et al.  Localized Electronic Excitations in Phenylacetylene Dendrimers , 1998 .

[9]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[10]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[11]  Brian Herman,et al.  Fluorescence imaging spectroscopy and microscopy , 1996 .

[12]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[13]  M. Nowakowska,et al.  In search of the plastic enzyme , 1995 .

[14]  N. Geacintov,et al.  The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments , 1992 .

[15]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[16]  P. Gennes,et al.  Statistics of « starburst » polymers , 1983 .

[17]  S. Webber,et al.  Photon-harvesting polymers , 1990 .

[18]  Michael R. Shortreed,et al.  Spectroscopic Evidence for Excitonic Localization in Fractal Antenna Supermolecules , 1997 .

[19]  Jeffrey S. Moore,et al.  Dendrimeric Antenna Supermolecules with Multistep Directed Energy Transfer , 1998 .

[20]  Takakazu Yamamoto,et al.  Polypyridine block as molecular antenna in photoluminescence of macromolecular systems , 1995 .

[21]  Marye Anne Fox,et al.  Light-harvesting polymer systems , 1993 .

[22]  C. Bignozzi,et al.  Photosensitization of wide bandgap semiconductors with antenna molecules , 1995 .

[23]  Masaru Miya,et al.  The third-order optical non-linearity of the phenylethynyl-substituted benzene system , 1995 .

[24]  M. Fox Polymeric and supramolecular arrays for directional energy and electron transport over macroscopic distances , 1992 .

[25]  Raoul Kopelman,et al.  Dendrimers as Controlled Artificial Energy Antennae , 1997 .

[26]  P. Mathis,et al.  Primary Processes of Photosynthesis , 1981 .

[27]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[28]  Jonathan S. Lindsey,et al.  A molecular photonic wire , 1994 .

[29]  Charles L. Wilkins,et al.  Phenylacetylene Dendrimers by the Divergent, Convergent, and Double-Stage Convergent Methods , 1994 .