PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1
暂无分享,去创建一个
[1] Stephen K. N. Portillo,et al. Photometric Biases in Modern Surveys , 2019, The Astronomical Journal.
[2] R. J. Wainscoat,et al. Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.
[3] R. J. Wainscoat,et al. Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.
[4] P. A. Price,et al. Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.
[5] P. A. Price,et al. The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.
[6] Snehanshu Saha,et al. Separating stars from quasars: Machine learning investigation using photometric data , 2019, Astron. Comput..
[7] Judith G. Cohen,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.
[8] Adam A. Miller,et al. Mapping the Interstellar Reddening and Extinction toward Baade’s Window Using Minimum Light Colors of ab-type RR Lyrae Stars: Revelations from the De-reddened Color–Magnitude Diagrams , 2019, The Astrophysical Journal.
[9] Massimo Brescia,et al. Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[10] J. Smillie,et al. The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies , 2018, 1910.08284.
[11] Jessica R. Lu,et al. The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.
[12] M. Bilicki,et al. Photometric redshifts for the Kilo-Degree Survey , 2017, Astronomy & Astrophysics.
[13] N. E. Sommer,et al. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.
[14] D. A. García-Hernández,et al. University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .
[15] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[16] E. Ishida,et al. On the realistic validation of photometric redshifts , 2017, 1701.08748.
[17] Alexander S. Szalay,et al. Photo-z-SQL: integrated, flexible photometric redshift computation in a database , 2016, Astron. Comput..
[18] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.
[19] D. Minniti,et al. Constraining Dust Extinction Properties via the VVV Survey , 2016, 1607.08623.
[20] R. Blum,et al. Extinction law in the range 0.4 - 4.8 μm and the 8620 Å DIB towards the stellar cluster Westerlund 1 , 2016, 1607.04639.
[21] Alexander S. Szalay,et al. Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.
[22] H. Rix,et al. THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY , 2016, 1602.03928.
[23] G. Zasowski,et al. Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology , 2015, 1510.01321.
[24] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[25] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[26] Edward J. Kim,et al. A Hybrid Ensemble Learning Approach to Star-Galaxy Classification , 2015, 1505.02200.
[27] G. Longo,et al. Photometric redshift estimation based on data mining with PhotoRApToR , 2015, Experimental Astronomy.
[28] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[29] M. Brescia,et al. A catalogue of photometric redshifts for the SDSS-DR9 galaxies , 2014, 1407.2527.
[30] H. Rix,et al. A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1 , 2014, 1405.2922.
[31] G. W. Pratt,et al. Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.
[32] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[33] A. Fontana,et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.
[34] A. Mazure,et al. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.
[35] L. Wisotzki,et al. Aperture corrections for disk galaxy properties derived from the CALIFA survey - Balmer emission lines in spiral galaxies , 2013, 1304.1644.
[36] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[37] M. A. Strauss,et al. SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.
[38] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[39] Kyoung-Soo Lee,et al. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.
[40] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[41] Xue-Bing Wu,et al. Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data , 2010, 1004.1756.
[42] Alexander S. Szalay,et al. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .
[43] Gregory Dobler,et al. SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY , 2010, 1002.2642.
[44] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[45] B. Garilli,et al. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .
[46] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[47] R. Bender,et al. Photometric redshifts for the CFHTLS-Wide , 2008, 0811.3211.
[48] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[49] Yong-Heng Zhao,et al. Support vector machines and kd-tree for separating quasars from large survey data bases , 2008 .
[50] Alexander S. Szalay,et al. Multidimensional indexing tools for the virtual observatory , 2007 .
[51] Huan Lin,et al. A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.
[52] Alexander S. Szalay,et al. TO APPEAR IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROBABILISTIC CROSS-IDENTIFICATION OF ASTRONOMICAL SOURCES , 2008 .
[53] D. Wake,et al. MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies , 2006, astro-ph/0607630.
[54] R. Bouwens,et al. Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.
[55] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[56] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[57] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[58] Alexander G. Gray,et al. EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.
[59] R. Nichol,et al. The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.
[60] Walter A. Siegmund,et al. The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release , 2001, astro-ph/0110629.
[61] L. Moscardini,et al. Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.
[62] V. Narayanan,et al. Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.
[63] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[64] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[65] D. Hayes. ABSOLUTE SPECTROPHOTOMETRIC CALIBRATION OF THE ENERGY DISTRIBUTION OF TWELVE STANDARD STARS. , 1970 .