PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1

The Pan-STARRS1 (PS1) $3\pi$ survey is a comprehensive optical imaging survey of three quarters of the sky in the $grizy$ broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift (photo-z) catalogue for PS1 $3\pi$ Data Release 1, titled Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM). For both main data products, we use neural network architectures, trained on a compilation of public spectroscopic measurements that has been cross-matched with PS1 sources. We quantify the parameter space coverage of our training data set, and flag extrapolation using self-organizing maps. We perform a Monte-Carlo sampling of the photometry to estimate photo-z uncertainty. The final catalogue contains $2,902,054,648$ objects. On our validation data set, for non-extrapolated sources, we achieve an overall classification accuracy of $98.1\%$ for galaxies, $97.8\%$ for stars, and $96.6\%$ for quasars. Regarding the galaxy photo-z estimation, we attain an overall bias of $\left =0.0005$, a standard deviation of $\sigma(\Delta z_{\mathrm{norm}})=0.0322$, a median absolute deviation of $\mathrm{MAD}(\Delta z_{\mathrm{norm}})=0.0161$, and an outlier fraction of $O=1.89\%$. The catalogue will be made available as a high-level science product via the Mikulski Archive for Space Telescopes at this https URL.

[1]  Stephen K. N. Portillo,et al.  Photometric Biases in Modern Surveys , 2019, The Astronomical Journal.

[2]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[3]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[4]  P. A. Price,et al.  Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.

[5]  P. A. Price,et al.  The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.

[6]  Snehanshu Saha,et al.  Separating stars from quasars: Machine learning investigation using photometric data , 2019, Astron. Comput..

[7]  Judith G. Cohen,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.

[8]  Adam A. Miller,et al.  Mapping the Interstellar Reddening and Extinction toward Baade’s Window Using Minimum Light Colors of ab-type RR Lyrae Stars: Revelations from the De-reddened Color–Magnitude Diagrams , 2019, The Astrophysical Journal.

[9]  Massimo Brescia,et al.  Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  J. Smillie,et al.  The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies , 2018, 1910.08284.

[11]  Jessica R. Lu,et al.  The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.

[12]  M. Bilicki,et al.  Photometric redshifts for the Kilo-Degree Survey , 2017, Astronomy & Astrophysics.

[13]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[14]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[15]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[16]  E. Ishida,et al.  On the realistic validation of photometric redshifts , 2017, 1701.08748.

[17]  Alexander S. Szalay,et al.  Photo-z-SQL: integrated, flexible photometric redshift computation in a database , 2016, Astron. Comput..

[18]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.

[19]  D. Minniti,et al.  Constraining Dust Extinction Properties via the VVV Survey , 2016, 1607.08623.

[20]  R. Blum,et al.  Extinction law in the range 0.4 - 4.8 μm and the 8620 Å DIB towards the stellar cluster Westerlund 1 , 2016, 1607.04639.

[21]  Alexander S. Szalay,et al.  Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.

[22]  H. Rix,et al.  THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY , 2016, 1602.03928.

[23]  G. Zasowski,et al.  Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology , 2015, 1510.01321.

[24]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[25]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[26]  Edward J. Kim,et al.  A Hybrid Ensemble Learning Approach to Star-Galaxy Classification , 2015, 1505.02200.

[27]  G. Longo,et al.  Photometric redshift estimation based on data mining with PhotoRApToR , 2015, Experimental Astronomy.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  M. Brescia,et al.  A catalogue of photometric redshifts for the SDSS-DR9 galaxies , 2014, 1407.2527.

[30]  H. Rix,et al.  A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1 , 2014, 1405.2922.

[31]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[32]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[33]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[34]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[35]  L. Wisotzki,et al.  Aperture corrections for disk galaxy properties derived from the CALIFA survey - Balmer emission lines in spiral galaxies , 2013, 1304.1644.

[36]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[37]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[38]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[39]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[40]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[41]  Xue-Bing Wu,et al.  Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data , 2010, 1004.1756.

[42]  Alexander S. Szalay,et al.  RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .

[43]  Gregory Dobler,et al.  SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY , 2010, 1002.2642.

[44]  Jiangang Hao,et al.  ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.

[45]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[46]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[47]  R. Bender,et al.  Photometric redshifts for the CFHTLS-Wide , 2008, 0811.3211.

[48]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[49]  Yong-Heng Zhao,et al.  Support vector machines and kd-tree for separating quasars from large survey data bases , 2008 .

[50]  Alexander S. Szalay,et al.  Multidimensional indexing tools for the virtual observatory , 2007 .

[51]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[52]  Alexander S. Szalay,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROBABILISTIC CROSS-IDENTIFICATION OF ASTRONOMICAL SOURCES , 2008 .

[53]  D. Wake,et al.  MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies , 2006, astro-ph/0607630.

[54]  R. Bouwens,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[55]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[56]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[57]  Y. Wadadekar Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.

[58]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[59]  R. Nichol,et al.  The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.

[60]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release , 2001, astro-ph/0110629.

[61]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[62]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[63]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[64]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[65]  D. Hayes ABSOLUTE SPECTROPHOTOMETRIC CALIBRATION OF THE ENERGY DISTRIBUTION OF TWELVE STANDARD STARS. , 1970 .