In Situ Hydrogenation and Crystal Chemistry Studies of Co2Si Type Compounds MgPd2 and Pd2Zn

The hydrogenation properties of the intermetallic compounds MgPd2 and Pd2Zn, crystallizing in the Co2Si type, were studied by in situ thermal analysis (DSC) under hydrogen pressure. Pd2Zn does not show any reaction with hydrogen while MgPd2 reversibly forms the hydride MgPd2H. Neutron diffraction on the deuterides reveals the compositions MgPd2D0.861(6) (ambient) and MgPd2D0.97(1) [308(2) K, 2.56(5) MPa deuterium] with hydrogen (deuterium) occupying distorted [MgPd5] octahedral voids. Quantum mechanical calculations support the structure models and show the hydrogenation to be exergonic for MgPd2 and endergonic for Pd2Zn. MgPd2H releases hydrogen under normal conditions or vacuum. Heating under hydrogen pressure leads first reversibly to MgPd2H≈0.2 and subsequently irreversibly to MgPd3H≈1 and MgH2. MgPd2, Pd2Zn, and MgPd2H were classified in a structure map. Trends of axial ratio changes upon hydrogenation of TiNiSi type and ZrBeSi type compounds are discussed.

[1]  H. Kohlmann,et al.  Vacancy ordering in Pd11Bi2Se2 - Crystal structure and properties , 2018 .

[2]  T. Hansen,et al.  The reversible hydrogenation of BiPd3 followed by in situ methods and the crystal structure of PbPd3D0.13(1) , 2018 .

[3]  J. Sander,et al.  Crystal structures and hydrogenation properties of palladium-rich compounds with elements from groups 12–16 , 2016 .

[4]  T. Hansen,et al.  Chemical Reactions followed by in situ Neutron Powder Diffraction , 2014 .

[5]  Bi‐Yu Tang,et al.  First-principles study of structural stability and elastic properties of MgPd3 and its hydride , 2014 .

[6]  G. Tendeloo,et al.  Pd5InSe and Pd8In2Se – New metal-rich homological selenides with 2D palladium–indium fragments: Synthesis, structure and bonding , 2014 .

[7]  A. Adamska,et al.  Variations of structure and magnetic properties in UTGe hydrides (T = late transition metal) , 2012 .

[8]  J. Procházka,et al.  Effects of hydrogenation on magnetism of UNiGe , 2011 .

[9]  A. Adamska,et al.  Hydrogen induced changes in the crystal structure and magnetic properties of UCoGe , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  J. Waerenborgh,et al.  Hydrogen absorption and 57Fe Mössbauer effect in UFeGe , 2011 .

[11]  A. V. Skripov,et al.  The anti-perovskite type hydride InPd3H0.89 , 2010 .

[12]  Chick C. Wilson,et al.  Structural isotope effects in metal hydrides and deuterides. , 2010, Physical chemistry chemical physics : PCCP.

[13]  H. Kohlmann Hydrogenation of palladium rich compounds of aluminium, gallium and indium , 2010 .

[14]  R. Weihrich,et al.  In situ Neutron Powder Diffraction on Intermediate Hydrides of MgPd3 in a Novel Sapphire Gas Pressure Cell , 2009 .

[15]  E. Gaudin,et al.  Structure, magnetic and electrical properties of CeIrSb and its hydride CeIrSbH0.8 , 2009 .

[16]  E. Suard,et al.  Structural and electrical properties of calcium and strontium hydrides , 2009 .

[17]  A. Cheetham,et al.  Preparation and characterization of Pd2Sn nanoparticles , 2007 .

[18]  P. Svedlindh,et al.  Crystal and magnetic structure of TbNiSnD studied by neutron powder diffraction , 2007 .

[19]  F. Schappacher,et al.  Inducing Magnetism in the Kondo Semiconductor CeRhSb through Hydrogenation: Antiferromagnetic Behavior of the New Hydride CeRhSbH0.2 , 2007 .

[20]  A. Wattiaux,et al.  The Doniach diagram and hydrogenation of the ternary compounds CePdIn and CePdSn , 2006 .

[21]  A. Andreev,et al.  UCoSiH0.7: new representative of UTSiHx hydrides , 2004 .

[22]  H. Brinks Synthesis and crystal structure of TbNiGeD1.8 , 2004 .

[23]  J. Etourneau,et al.  Magnetic ordering induced by the hydrogenation of the ternary stannide CeNiSn , 2004 .

[24]  F. Weill,et al.  The new hydrides CeNiGeH1.6 and CeCuGeH1.0 crystallizing in the derivative hexagonal ZrBeSi-type structure , 2004 .

[25]  M. Maryško,et al.  Effect of Hydrogenation on Crystal Structure and Magnetic Properties of UTSi (T = Pd, Ni) Intermetallics. , 2002 .

[26]  B. Harbrecht,et al.  Iod-katalysierte Herstellung von intermetallischen Verbindungen der Edelmetalle: Die Kristallstrukturen von BePd2 und BePd3Professsor Welf Bronger zum 70. Geburtstag gewidmet , 2002 .

[27]  H. Fjellvåg,et al.  The magnetic structure of TbNiSiD1.78 , 2002 .

[28]  H. Fjellvåg,et al.  Orthorhombic NdNiSnD with filled TiNiSi-type structure , 2002 .

[29]  F. Weill,et al.  Structural and magnetic properties of the new hydride CeAuAlH1.4(1) , 2002 .

[30]  H. Fjellvåg,et al.  Hexagonal LaNiSnD2 with a filled ZrBeSi-type structure , 2002 .

[31]  V. Yartys,et al.  Crystal structure of TbNiSiD1.78 , 2001 .

[32]  B. Harbrecht,et al.  Structure and Thermal Stability of the New Intermetallics MgPd2, MgPd3, and Mg3Pd5 and the Kinetics of the Iodine-Catalyzed Formation of MgPd2 , 2001 .

[33]  K. Yvon,et al.  Europium palladium hydrides. , 2001, Inorganic chemistry.

[34]  R. Pöttgen,et al.  AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations , 2001 .

[35]  K. Yvon,et al.  The crystal structures of EuH2 and EuLiH3 by neutron powder diffraction , 2000 .

[36]  V. Pomjakushin,et al.  High-resolution powder diffractometer HRPT for thermal neutrons at SINQ , 2000 .

[37]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[43]  W. Jeitschko,et al.  Rh2Sb with (anti-)PbCl2-Type Structure , 1990 .

[44]  M. Lumbreras,et al.  Structure and ionic conductivity of mixed lead halides PbCl2xBr2(1−x.). II , 1986 .

[45]  E. Kaldis,et al.  Crystal structure of YbD2 and its temperature dependence determined by neutron diffraction , 1983 .

[46]  K. Yvon,et al.  Rhodium scandium disilicide with an ordered YZn3‐type structure , 1981 .

[47]  O. Loebich,et al.  Zur struktur der intermetallischen verbindung LiPd2 , 1979 .

[48]  J. Tanaka,et al.  Ternary hydrides of calcium and strontium with palladium , 1972 .

[49]  G. Kádár,et al.  New antiferromagnetic intermetallic compound in the Mn-Pd system: MnPd2 , 1972 .

[50]  K. Schubert,et al.  Über die struktur von phasen mit kupfer unterstruktur in einigen t-b legierungen (T= Ni, Pd, Pt; B = Ga, In, Tl, Pb, Sb, Bi) , 1969 .

[51]  W. Jeitschko The crystal structure of MoCoB and related compounds , 1968 .

[52]  E. A. Wood,et al.  Laves‐phase compounds of alkaline earths and noble metals , 1958 .