In Situ Hydrogenation and Crystal Chemistry Studies of Co2Si Type Compounds MgPd2 and Pd2Zn
暂无分享,去创建一个
[1] H. Kohlmann,et al. Vacancy ordering in Pd11Bi2Se2 - Crystal structure and properties , 2018 .
[2] T. Hansen,et al. The reversible hydrogenation of BiPd3 followed by in situ methods and the crystal structure of PbPd3D0.13(1) , 2018 .
[3] J. Sander,et al. Crystal structures and hydrogenation properties of palladium-rich compounds with elements from groups 12–16 , 2016 .
[4] T. Hansen,et al. Chemical Reactions followed by in situ Neutron Powder Diffraction , 2014 .
[5] Bi‐Yu Tang,et al. First-principles study of structural stability and elastic properties of MgPd3 and its hydride , 2014 .
[6] G. Tendeloo,et al. Pd5InSe and Pd8In2Se – New metal-rich homological selenides with 2D palladium–indium fragments: Synthesis, structure and bonding , 2014 .
[7] A. Adamska,et al. Variations of structure and magnetic properties in UTGe hydrides (T = late transition metal) , 2012 .
[8] J. Procházka,et al. Effects of hydrogenation on magnetism of UNiGe , 2011 .
[9] A. Adamska,et al. Hydrogen induced changes in the crystal structure and magnetic properties of UCoGe , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] J. Waerenborgh,et al. Hydrogen absorption and 57Fe Mössbauer effect in UFeGe , 2011 .
[11] A. V. Skripov,et al. The anti-perovskite type hydride InPd3H0.89 , 2010 .
[12] Chick C. Wilson,et al. Structural isotope effects in metal hydrides and deuterides. , 2010, Physical chemistry chemical physics : PCCP.
[13] H. Kohlmann. Hydrogenation of palladium rich compounds of aluminium, gallium and indium , 2010 .
[14] R. Weihrich,et al. In situ Neutron Powder Diffraction on Intermediate Hydrides of MgPd3 in a Novel Sapphire Gas Pressure Cell , 2009 .
[15] E. Gaudin,et al. Structure, magnetic and electrical properties of CeIrSb and its hydride CeIrSbH0.8 , 2009 .
[16] E. Suard,et al. Structural and electrical properties of calcium and strontium hydrides , 2009 .
[17] A. Cheetham,et al. Preparation and characterization of Pd2Sn nanoparticles , 2007 .
[18] P. Svedlindh,et al. Crystal and magnetic structure of TbNiSnD studied by neutron powder diffraction , 2007 .
[19] F. Schappacher,et al. Inducing Magnetism in the Kondo Semiconductor CeRhSb through Hydrogenation: Antiferromagnetic Behavior of the New Hydride CeRhSbH0.2 , 2007 .
[20] A. Wattiaux,et al. The Doniach diagram and hydrogenation of the ternary compounds CePdIn and CePdSn , 2006 .
[21] A. Andreev,et al. UCoSiH0.7: new representative of UTSiHx hydrides , 2004 .
[22] H. Brinks. Synthesis and crystal structure of TbNiGeD1.8 , 2004 .
[23] J. Etourneau,et al. Magnetic ordering induced by the hydrogenation of the ternary stannide CeNiSn , 2004 .
[24] F. Weill,et al. The new hydrides CeNiGeH1.6 and CeCuGeH1.0 crystallizing in the derivative hexagonal ZrBeSi-type structure , 2004 .
[25] M. Maryško,et al. Effect of Hydrogenation on Crystal Structure and Magnetic Properties of UTSi (T = Pd, Ni) Intermetallics. , 2002 .
[26] B. Harbrecht,et al. Iod-katalysierte Herstellung von intermetallischen Verbindungen der Edelmetalle: Die Kristallstrukturen von BePd2 und BePd3Professsor Welf Bronger zum 70. Geburtstag gewidmet , 2002 .
[27] H. Fjellvåg,et al. The magnetic structure of TbNiSiD1.78 , 2002 .
[28] H. Fjellvåg,et al. Orthorhombic NdNiSnD with filled TiNiSi-type structure , 2002 .
[29] F. Weill,et al. Structural and magnetic properties of the new hydride CeAuAlH1.4(1) , 2002 .
[30] H. Fjellvåg,et al. Hexagonal LaNiSnD2 with a filled ZrBeSi-type structure , 2002 .
[31] V. Yartys,et al. Crystal structure of TbNiSiD1.78 , 2001 .
[32] B. Harbrecht,et al. Structure and Thermal Stability of the New Intermetallics MgPd2, MgPd3, and Mg3Pd5 and the Kinetics of the Iodine-Catalyzed Formation of MgPd2 , 2001 .
[33] K. Yvon,et al. Europium palladium hydrides. , 2001, Inorganic chemistry.
[34] R. Pöttgen,et al. AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations , 2001 .
[35] K. Yvon,et al. The crystal structures of EuH2 and EuLiH3 by neutron powder diffraction , 2000 .
[36] V. Pomjakushin,et al. High-resolution powder diffractometer HRPT for thermal neutrons at SINQ , 2000 .
[37] R. Hoffmann,et al. The TiNiSi Family of Compounds: Structure and Bonding , 1998 .
[38] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[39] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[40] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[41] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[42] Blöchl,et al. Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.
[43] W. Jeitschko,et al. Rh2Sb with (anti-)PbCl2-Type Structure , 1990 .
[44] M. Lumbreras,et al. Structure and ionic conductivity of mixed lead halides PbCl2xBr2(1−x.). II , 1986 .
[45] E. Kaldis,et al. Crystal structure of YbD2 and its temperature dependence determined by neutron diffraction , 1983 .
[46] K. Yvon,et al. Rhodium scandium disilicide with an ordered YZn3‐type structure , 1981 .
[47] O. Loebich,et al. Zur struktur der intermetallischen verbindung LiPd2 , 1979 .
[48] J. Tanaka,et al. Ternary hydrides of calcium and strontium with palladium , 1972 .
[49] G. Kádár,et al. New antiferromagnetic intermetallic compound in the Mn-Pd system: MnPd2 , 1972 .
[50] K. Schubert,et al. Über die struktur von phasen mit kupfer unterstruktur in einigen t-b legierungen (T= Ni, Pd, Pt; B = Ga, In, Tl, Pb, Sb, Bi) , 1969 .
[51] W. Jeitschko. The crystal structure of MoCoB and related compounds , 1968 .
[52] E. A. Wood,et al. Laves‐phase compounds of alkaline earths and noble metals , 1958 .