Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue State Tracking

Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. To encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can obtain new state-of-the-art performance of the open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.

[1]  Dilek Z. Hakkani-Tür,et al.  Dialog State Tracking: A Neural Reading Comprehension Approach , 2019, SIGdial.

[2]  Li Zhou,et al.  Multi-domain Dialogue State Tracking as Dynamic Knowledge Graph Enhanced Question Answering , 2019, ArXiv.

[3]  Kai Yu,et al.  Data Augmentation with Atomic Templates for Spoken Language Understanding , 2019, EMNLP.

[4]  Philip S. Yu,et al.  Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking , 2019, STARSEM.

[5]  Dilek Z. Hakkani-Tür,et al.  HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking , 2019, INTERSPEECH.

[6]  Lu Chen,et al.  Constrained Markov Bayesian Polynomial for Efficient Dialogue State Tracking , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[7]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[8]  Matthew Henderson,et al.  The Second Dialog State Tracking Challenge , 2014, SIGDIAL Conference.

[9]  Antoine Raux,et al.  The Dialog State Tracking Challenge , 2013, SIGDIAL Conference.

[10]  Tae-Yoon Kim,et al.  SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking , 2019, ACL.

[11]  Matthew Henderson,et al.  Word-Based Dialog State Tracking with Recurrent Neural Networks , 2014, SIGDIAL Conference.

[12]  Matthew Henderson,et al.  Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[13]  Chi Wang,et al.  Schema-Guided Multi-Domain Dialogue State Tracking with Graph Attention Neural Networks , 2020, AAAI.

[14]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[15]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[16]  Kai Yu,et al.  Semantic Parsing with Dual Learning , 2019, ACL.

[17]  Tsung-Hsien Wen,et al.  Neural Belief Tracker: Data-Driven Dialogue State Tracking , 2016, ACL.

[18]  Matthew Henderson,et al.  The third Dialog State Tracking Challenge , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[19]  Richard Socher,et al.  Non-Autoregressive Dialog State Tracking , 2020, ICLR.

[20]  Diego Marcheggiani,et al.  Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks , 2018, NAACL.

[21]  Qi Hu,et al.  An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking , 2018, ACL.

[22]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[23]  Jason Williams A belief tracking challenge task for spoken dialog systems , 2012, SDCTD@NAACL-HLT.

[24]  Lu Chen,et al.  Structured Dialogue Policy with Graph Neural Networks , 2018, COLING.

[25]  Pawel Budzianowski,et al.  Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing , 2018, ACL.

[26]  Kai Yu,et al.  AgentGraph: Toward Universal Dialogue Management With Structured Deep Reinforcement Learning , 2019, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[27]  Zhi Chen,et al.  AgentGraph: Towards Universal Dialogue Management with Structured Deep Reinforcement Learning , 2019 .

[28]  Gyuwan Kim,et al.  Efficient Dialogue State Tracking by Selectively Overwriting Memory , 2020, ACL.

[29]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[30]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[31]  Kai Yu,et al.  Semi-Supervised Training Using Adversarial Multi-Task Learning for Spoken Language Understanding , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  Yoshimasa Tsuruoka,et al.  A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks , 2016, EMNLP.

[33]  Mihail Eric,et al.  MultiWOZ 2. , 2019 .

[34]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[35]  Dilek Z. Hakkani-Tür,et al.  MultiWOZ 2.1: Multi-Domain Dialogue State Corrections and State Tracking Baselines , 2019, ArXiv.

[36]  Stefan Ultes,et al.  MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling , 2018, EMNLP.

[37]  Yuan Luo,et al.  Graph Convolutional Networks for Text Classification , 2018, AAAI.

[38]  Lu Chen,et al.  The SJTU System for Dialog State Tracking Challenge 2 , 2014, SIGDIAL Conference.

[39]  Jianmo Ni,et al.  Scalable and Accurate Dialogue State Tracking via Hierarchical Sequence Generation , 2019, EMNLP.

[40]  Milica Gasic,et al.  POMDP-Based Statistical Spoken Dialog Systems: A Review , 2013, Proceedings of the IEEE.

[41]  Lu Chen,et al.  Towards Universal Dialogue State Tracking , 2018, EMNLP.

[42]  Richard Socher,et al.  Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems , 2019, ACL.

[43]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[44]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[45]  Lu Chen,et al.  A generalized rule based tracker for dialogue state tracking , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[46]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.