Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems

Abstract Exponentially fitted Runge–Kutta methods for the numerical integration of the radial Schrodinger equation or systems of equations of the Schrodinger type and for the numerical solution of other related initial-value problems with periodic or oscillating solutions are developed in this paper. Numerical and theoretical results obtained for several well-known problems show the efficiency of the new methods.

[1]  T. E. Simos,et al.  A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .

[2]  Richard B. Bernstein,et al.  Quantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beams , 1960 .

[3]  John M. Blatt,et al.  Practical points concerning the solution of the Schrödinger equation , 1967 .

[4]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[5]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[6]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[7]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[8]  T. E. Simos,et al.  Embedded methods for the numerical solution of the Schrödinger equation , 1996 .

[9]  T. E. Simos A four-step method for the numerical solution of the Schro¨dinger equation , 1990 .

[10]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[11]  T. E. Simos,et al.  P-stable Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1999 .

[12]  A. D. Raptis,et al.  A variable step method for the numerical integration of the one-dimensional Schrödinger equation , 1985 .

[13]  A. Messiah Quantum Mechanics , 1961 .

[14]  Alexander Dalgarno,et al.  Thermal scattering of atoms by homonuclear diatomic molecules , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[16]  A. C. Allison,et al.  The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .

[17]  T. E. Simos,et al.  A generator of high-order embedded P-stable methods for the numerical solution of the Schro¨dinger equation , 1996 .