Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci

In order to further understand a complex 3D dynamical system showing strange chaotic attractors with two stable node-foci near Hopf bifurcation point, we propose nonlinear control scheme to the system and the controlled system, depending on five parameters, can exhibit codimension one, two, and three Hopf bifurcations in a much larger parameter regain. The control strategy used keeps the equilibrium structure of the chaotic system and can be applied to degenerate Hopf bifurcation at the desired location with preferred stability.

[1]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[2]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Guanrong Chen,et al.  Anti-control of Hopf bifurcations , 2001 .

[4]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[5]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[6]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[7]  Qigui Yang,et al.  Controlling the diffusionless Lorenz equations with periodic parametric perturbation , 2009, Comput. Math. Appl..

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  Jean-Pierre Barbot,et al.  Analysis and Control of Hopf Bifurcations , 2003, SIAM J. Control. Optim..

[10]  Marcelo Messias,et al.  Degenerate Hopf bifurcations in Chua's System , 2009, Int. J. Bifurc. Chaos.

[11]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[12]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[13]  Pei Yu,et al.  Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions , 2005 .

[14]  Luis Fernando Mello,et al.  Degenerate Hopf bifurcations in the Lü system , 2009 .

[15]  Denis de Carvalho Braga,et al.  Bifurcation analysis of the Watt governor system , 2006 .

[16]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[17]  Qigui Yang,et al.  Chaotic attractors of the Conjugate Lorenz-Type System , 2007, Int. J. Bifurc. Chaos.

[18]  O. Rössler An equation for continuous chaos , 1976 .

[19]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[20]  Denis de Carvalho Braga,et al.  Lyapunov Coefficients for Degenerate Hopf Bifurcations , 2007, 0709.3949.

[21]  L. Horwitz,et al.  BE A STRANGE ATTRACTOR ? , 2004 .

[22]  Floris Takens,et al.  Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations , 1973 .

[23]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[24]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[25]  Buncha Munmuangsaen,et al.  A new five-term simple chaotic attractor , 2009 .

[26]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.