Targeted AURKA degradation: Towards new therapeutic agents for neuroblastoma.

[1]  Xiaowu Dong,et al.  Structural Feature Analyzation Strategies toward Discovery of Orally Bioavailable PROTACs of Bruton's Tyrosine Kinase for the Treatment of Lymphoma. , 2022, Journal of medicinal chemistry.

[2]  B. Kuster,et al.  Novel, highly potent PROTACs targeting AURORA-A kinase , 2022, Current Research in Chemical Biology.

[3]  N. Levinson,et al.  Targeting N-Myc in Neuroblastoma with Selective Aurora Kinase A Degraders , 2022, bioRxiv.

[4]  D. Langley,et al.  PROTAC targeted protein degraders: the past is prologue , 2022, Nature Reviews Drug Discovery.

[5]  M. Gütschow,et al.  Influence of Linker Attachment Points on the Stability and Neosubstrate Degradation of Cereblon Ligands. , 2021, ACS medicinal chemistry letters.

[6]  F. Speleman,et al.  MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation , 2021, Cancers.

[7]  Daohong Zhou,et al.  Discovery of a Novel BCL-XL PROTAC Degrader with Enhanced BCL-2 Inhibition. , 2021, Journal of medicinal chemistry.

[8]  F. Speleman,et al.  HTSplotter: An end-to-end data processing, analysis and visualisation tool for chemical and genetic in vitro perturbation screening , 2021, bioRxiv.

[9]  Shaomeng Wang,et al.  Strategies toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer. , 2021, Journal of medicinal chemistry.

[10]  M. Gütschow,et al.  E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points , 2021, Frontiers in Chemistry.

[11]  J. L. La Clair,et al.  Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. , 2021, Journal of medicinal chemistry.

[12]  K. Roberts,et al.  Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool , 2021, Communications biology.

[13]  N. Thomä,et al.  Haven't got a glue: Protein surface variation for the design of molecular glue degraders. , 2021, Cell chemical biology.

[14]  S. Knapp,et al.  Drugging the “Undruggable” MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers , 2021, Cancer Research.

[15]  C. Thiele,et al.  Targeting MYCN in Pediatric and Adult Cancers , 2021, Frontiers in Oncology.

[16]  Jörg Otte,et al.  MYCN Function in Neuroblastoma Development , 2021, Frontiers in Oncology.

[17]  Philipp M Cromm,et al.  Structure driven compound optimization in targeted protein degradation. , 2020, Drug discovery today. Technologies.

[18]  N. Gray,et al.  Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development , 2020, Cell.

[19]  L. Goracci,et al.  Understanding the Metabolism of Proteolysis Targeting Chimeras (PROTACs): The Next Step toward Pharmaceutical Applications , 2020, Journal of medicinal chemistry.

[20]  B. Kuster,et al.  PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase , 2020, Nature Chemical Biology.

[21]  D. Mcginnity,et al.  Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. , 2020, Drug discovery today.

[22]  N. London,et al.  PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes , 2020, bioRxiv.

[23]  Nan Bai,et al.  Rationalizing PROTAC-mediated ternary complex formation using Rosetta , 2020, bioRxiv.

[24]  M. Wittwer,et al.  Fundamental aspects of DMPK optimization of targeted protein degraders. , 2020, Drug discovery today.

[25]  Qi Zhou,et al.  Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells , 2020, Cancer Cell International.

[26]  Christoph B. Messner,et al.  DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput , 2019, Nature Methods.

[27]  Bin Yang,et al.  Proteolysis targeting chimeras (PROTACs) in 'beyond rule-of-five' chemical space: Recent progress and future challenges. , 2019, Bioorganic & medicinal chemistry letters.

[28]  C. Crews,et al.  Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase , 2019, Nature Communications.

[29]  S. Gygi,et al.  Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function , 2019, The Journal of cell biology.

[30]  M. Koegl,et al.  Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel–Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7 , 2018, Journal of medicinal chemistry.

[31]  T. Hocking,et al.  Meta-mining of copy number profiles of high-risk neuroblastoma tumors , 2018, Scientific Data.

[32]  M. Rubin,et al.  A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers , 2018, Clinical Cancer Research.

[33]  Graham M. West,et al.  Delineating the role of cooperativity in the design of potent PROTACs for BTK , 2018, Proceedings of the National Academy of Sciences.

[34]  Philipp M. Cromm,et al.  Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation Relationships , 2018, ChemMedChem.

[35]  Michael C. Heinold,et al.  The landscape of genomic alterations across childhood cancers , 2018, Nature.

[36]  James E. Bradner,et al.  Plasticity in binding confers selectivity in ligand induced protein degradation , 2018, Nature Chemical Biology.

[37]  W. Guida,et al.  Ligand-mediated protein degradation reveals functional conservation among sequence variants of the CUL4-type E3 ligase substrate receptor cereblon , 2018, The Journal of Biological Chemistry.

[38]  W. Huber,et al.  Proteome-wide identification of ubiquitin interactions using UbIA-MS , 2018, Nature Protocols.

[39]  Guadalupe Espadas,et al.  QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories , 2018, PloS one.

[40]  D. Rickman,et al.  Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle , 2017, Cell reports.

[41]  A. Ciulli,et al.  Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders , 2017, Essays in biochemistry.

[42]  A. Desai,et al.  A Cell Biologist’s Field Guide to Aurora Kinase Inhibitors , 2015, Front. Oncol..

[43]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[44]  U. Nguyen,et al.  The Simple Western[trade]: a gel-free, blot-free, hands-free Western blotting reinvention , 2011 .

[45]  Jianhua Yang,et al.  Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma , 2009, Molecular Cancer Therapeutics.

[46]  R. Beijersbergen,et al.  Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. , 2009, Cancer cell.

[47]  Stephen S. Taylor,et al.  Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery , 2008, Nature.

[48]  H. Saya,et al.  Aurora-A — A guardian of poles , 2005, Nature Reviews Cancer.