Interest filter vs. interest operator: Face recognition using Fisher linear discriminant based on interest filter representation

This paper introduces a novel Fisher discriminant classifier based on the interest filter representation for face recognition. Our interest Fisher classifier (IFC), which is robust to illumination and facial expression variability, applies the Fisher linear discriminant (FLD) to an augmented interest feature vector derived from interest filter representation of face images. The novelty of this paper comes from our proposed interest filter: the interest operator can reveal the local activity of the images but suffer from some drawbacks and we improve the capability of the interest operator and propose a multi-orientation and multi-scale interest filter. In particular, we carry out comparative studies of different similarity measures applied to various classifiers. We also perform comparative experimental studies of various face recognition schemes, including our novel IFC method, the Eigenfaces and the Fisherfaces methods, the combination of interest operator and the Eigenfaces method, the combination of interest operator and the Fisherfaces method, the Eigenfaces on the augmented interest feature vectors and other popular subspace methods. The feasibility of the new IFC method has been successfully tested on two data sets from the FERET and AR databases. The novel IFC method achieves the highest accuracy on face recognition on both two datasets.

[1]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[2]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[3]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[4]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[5]  Jun Wang,et al.  A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension , 2004, IEEE Transactions on Knowledge and Data Engineering.

[6]  Jian Yang,et al.  Combined Fisherfaces framework , 2003, Image Vis. Comput..

[7]  Lide Wu,et al.  Face recognition by stepwise nonparametric margin maximum criterion , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[8]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[9]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[12]  Kazuo Kyuma,et al.  Face Recognition System Using Local Autocorrelations and Multiscale Integration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[14]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[15]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Osamu Hasegawa,et al.  Extension of higher order local autocorrelation features , 2005, Pattern Recognit..

[18]  P. Jonathon Phillips,et al.  Face recognition vendor test 2002 , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[19]  Alex Pentland,et al.  Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[20]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[21]  De-Shuang Huang,et al.  Interest Operator versus Gabor filtering for facial imagery classification , 2007, Pattern Recognit. Lett..

[22]  Hans P. Moravec Robot Rover Visual Navigation , 1981 .

[23]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Konstantinos N. Plataniotis,et al.  Face recognition using LDA-based algorithms , 2003, IEEE Trans. Neural Networks.

[25]  De-Shuang Huang,et al.  Human face recognition based on multi-features using neural networks committee , 2004, Pattern Recognit. Lett..

[26]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[27]  Tuo Zhao,et al.  Feature selection for linear support vector machines , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[28]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[30]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  PoggioTomaso,et al.  Example-Based Learning for View-Based Human Face Detection , 1998 .

[32]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[33]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[34]  Michael G. Strintzis,et al.  Face Recognition , 2008, Encyclopedia of Multimedia.

[35]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[36]  A. Martínez,et al.  The AR face databasae , 1998 .

[37]  Jian Yang,et al.  BDPCA plus LDA: a novel fast feature extraction technique for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[38]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[39]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[40]  Nasser M. Nasrabadi,et al.  Automatic target recognition using a feature-decomposition and data-decomposition modular neural network , 1998, IEEE Trans. Image Process..

[41]  Chengjun Liu,et al.  Enhanced Fisher linear discriminant models for face recognition , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[42]  Nasser M. Nasrabadi,et al.  Hopfield network for stereo vision correspondence , 1992, IEEE Trans. Neural Networks.

[43]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[44]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..