A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type

Nonlocal models allow for the description of phenomena which cannot be captured by classical partial differential equations. The availability of efficient solvers is one of the main concerns for the use of nonlocal models in real world engineering applications. We present a domain decomposition solver that is inspired by substructuring methods for classical local equations. In numerical experiments involving finite element discretizations of scalar and vectorial nonlocal equations of integrable and fractional type, we observe improvements in solution time of up to 14.6x compared to commonly used solver strategies.

[1]  V. Schulz,et al.  nlfem: A flexible 2d Fem Code for Nonlocal Convection-Diffusion and Mechanics , 2022, ArXiv.

[2]  Marta D'Elia,et al.  Fractional Modeling in Action: a Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials , 2021, Journal of Peridynamics and Nonlocal Modeling.

[3]  Christian Glusa,et al.  A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems , 2021, Computer Methods in Applied Mechanics and Engineering.

[4]  Luciano Lopez,et al.  A space-time discretization of a nonlinear peridynamic model on a 2D lamina , 2021, Comput. Math. Appl..

[5]  Marta D'Elia,et al.  Analysis of Anisotropic Nonlocal Diffusion Models: Well-posedness of Fractional Problems for Anomalous Transport , 2021, Proposed for presentation at the SIAM MS 2021..

[6]  Marta D'Elia,et al.  A general framework for substructuring‐based domain decomposition methods for models having nonlocal interactions , 2020, Numerical Methods for Partial Differential Equations.

[7]  Max Gunzburger,et al.  On a nonlocal Cahn-Hilliard model permitting sharp interfaces , 2020, Mathematical Models and Methods in Applied Sciences.

[8]  Christian A. Glusa,et al.  Numerical methods for nonlocal and fractional models , 2020, Acta Numerica.

[9]  M. D'Elia,et al.  Bilevel parameter optimization for nonlocal image denoising models. , 2019 .

[10]  M. Gunzburger,et al.  Regularity analyses and approximation of nonlocal variational equality and inequality problems , 2019, Journal of Mathematical Analysis and Applications.

[11]  M. Gunzburger,et al.  A nonlocal peridynamics modeling approach for corrosion damage and crack propagation , 2019, Theoretical and Applied Fracture Mechanics.

[12]  Qiang Du,et al.  Nonlocal Modeling, Analysis, and Computation , 2019 .

[13]  M. Gunzburger,et al.  A Peridynamics-FEM Approach for Crack Path Prediction in Fiber-Reinforced Composites , 2018 .

[14]  Qiang Du,et al.  Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes , 2017, Comput. Methods Appl. Math..

[15]  M. Gunzburger,et al.  The electroneutrality constraint in nonlocal models. , 2017, The Journal of chemical physics.

[16]  M. Gunzburger,et al.  Analysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson pair dispersion , 2016, Comput. Math. Appl..

[17]  R. Lehoucq,et al.  The exit-time problem for a Markov jump process , 2014, 1411.1817.

[18]  Burak Aksoylu,et al.  Conditioning Analysis of Nonlocal Integral Operators in Fractional Sobolev Spaces , 2014, SIAM J. Numer. Anal..

[19]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[20]  Qiang Du,et al.  The bond-based peridynamic system with Dirichlet-type volume constraint , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  Qiang Du,et al.  Analysis of the Volume-Constrained Peridynamic Navier Equation of Linear Elasticity , 2013 .

[22]  Qiang Du,et al.  Analysis of a scalar nonlocal peridynamic model with a sign changing kernel , 2013 .

[23]  R. Lehoucq,et al.  A non-local vector calculus,non-local volume-constrained problems,and non-local balance laws , 2013 .

[24]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[25]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[26]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[27]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[28]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[29]  Richard B. Lehoucq,et al.  Peridynamics as an Upscaling of Molecular Dynamics , 2009, Multiscale Model. Simul..

[30]  Burak Aksoylu,et al.  Variational theory and domain decomposition for nonlocal problems , 2009, Appl. Math. Comput..

[31]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[32]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[33]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[34]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[35]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[36]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[37]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[40]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[41]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[42]  Fahad Almutairi,et al.  Nonlocal vector calculus , 2018 .

[43]  Christian Willberg,et al.  Peridigm Users Guide , 2018 .

[44]  Michael L. Parks,et al.  Peridynamic State-Based Models and the Embedded-Atom Model , 2014 .

[45]  Robert Lipton,et al.  Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation , 2012 .

[46]  K. Zhou A nonlocal vector calculus , nonlocal volume-constrained problems , and nonlocal balance laws , 2011 .

[47]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[48]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[49]  J. Morel,et al.  On image denoising methods , 2004 .

[50]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .