Generalized Kronecker product splitting iteration for the solution of implicit Runge–Kutta and boundary value methods

Summary This paper is concerned with a generalization of the Kronecker product splitting (KPS) iteration for solving linear systems arising in implicit Runge–Kutta and boundary value methods discretizations of ordinary differential equations. It is shown that the new scheme can outperform the standard KPS method in some situations and can be used as an effective preconditioner for Krylov subspace methods. Numerical experiments are presented to demonstrate the effectiveness of the methods. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Francesca Mazzia,et al.  Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques , 1998 .

[2]  Piet J. van der Houwen,et al.  Triangularly Implicit Iteration Methods for ODE-IVP Solvers , 1997, SIAM J. Sci. Comput..

[3]  Hao Chen,et al.  Strang-type preconditioners applied to ordinary and neutral differential-algebraic equations , 2011, Numer. Linear Algebra Appl..

[4]  Hao Chen,et al.  A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .

[5]  Kent-André Mardal,et al.  Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..

[6]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  W. Hoffmann,et al.  Approximating Runge-Kutta matrices by triangular matrices , 1995 .

[9]  Stefan Vandewalle,et al.  Multigrid Methods for Implicit Runge-Kutta and Boundary Value Method Discretizations of Parabolic PDEs , 2005, SIAM J. Sci. Comput..

[10]  Laurent O. Jay,et al.  A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta-type methods , 1999 .

[11]  Raymond H. Chan,et al.  Strang‐type preconditioners for systems of LMF‐based ODE codes , 2001 .

[12]  Daniele Bertaccini,et al.  A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..

[13]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[14]  Laurent O. Jay,et al.  Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..

[15]  Michael K. Ng,et al.  Band-Toeplitz Preconditioned GMRES Iterations for Time-Dependent PDEs , 2003 .

[16]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[17]  Michael K. Ng,et al.  The Convergence Rate of Block Preconditioned Systems Arising from LMF-based ODE Codes , 2001 .

[18]  P. J. der,et al.  Triangularly Implicit Iteration Methods for ODE-IVP Solvers , 1997 .

[19]  Trygve K. Nilssen,et al.  Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs , 2006 .

[20]  Daniele Bertaccini Reliable preconditioned iterative linear solvers for some numerical integrators , 2001 .