A hit-or-miss transform for multivariate images

The hit-or-miss transform (HMT) is considered to be among the fundamental operations in the morphological toolbox. Initially, it was defined for binary images, as a morphological approach to the problem of template matching, whereas its extension to grey-level data has been problematic, leading to multiple definitions, that have been only recently unified by means of a common theoretical foundation. In this paper, we generalise these definitions to the case of multivariate images, and propose a vectorial HMT, allowing the detection of objects over multiple image channels. Moreover, in order to counter the operator's extreme sensitivity to variations, rank order filters as well as synthetic structuring functions are studied in the context of multivariate data. We additionally present examples of the use of the suggested operator in combination with colour images.

[1]  Sébastien Lefèvre,et al.  A Multivariate Hit-or-Miss Transform for Conjoint Spatial and Spectral Template Matching , 2008, ICISP.

[2]  Weibin Zhu,et al.  Shape recognition method using morphological hit-or-miss transform , 1995 .

[3]  Jesús Angulo,et al.  Unified Morphological Color Processing Framework in a Lum/Sat/Hue Representation , 2005, ISMM.

[4]  Soo-Joong Kim,et al.  New morphological detection algorithm based on the hit-miss transform , 2002 .

[5]  H. Heijmans Morphological image operators , 1994 .

[6]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[7]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[8]  Pierre Soille,et al.  On morphological operators based on rank filters , 2002, Pattern Recognit..

[9]  Ronald W. Schafer,et al.  Template matching based on a grayscale hit-or-miss transform , 1996, IEEE Trans. Image Process..

[10]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[11]  S. S. Wilson,et al.  Vector morphology and iconic neural networks , 1989, IEEE Trans. Syst. Man Cybern..

[12]  Cécile Barat,et al.  Pattern matching using morphological probing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[13]  Pierre Soille,et al.  Advances in the Analysis of Topographic Features on Discrete Images , 2002, DGCI.

[14]  G. Matheron Random Sets and Integral Geometry , 1976 .

[15]  Bogdan Raducanu,et al.  A grayscale hit-or-miss transform based on level sets , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[16]  David Casasent,et al.  Nonlinear optical hit-miss transform for detection. , 1995, Applied optics.

[17]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[18]  Etienne Decencière,et al.  Mathematical Morphology: 40 Years On, Proceedings of the 7th International Symposium on Mathematical Morphology, ISMM 2005, Paris, France, April 18-20, 2005 , 2005, ISMM.

[19]  Henk J. A. M. Heijmans,et al.  Convergence, continuity, and iteration in mathematical morphology , 1992, J. Vis. Commun. Image Represent..

[20]  Nicolas Passat,et al.  Grey-level hit-or-miss transforms - Part I: Unified theory , 2007, Pattern Recognit..

[21]  Dan S. Bloomberg,et al.  Pattern matching using the blur hit - miss transform , 2000, J. Electronic Imaging.

[22]  Dongming Zhao,et al.  Shape recognition using morphological transformations , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[23]  C. Ronse,et al.  A Lattice-Theoretical Morphological View on Template Extraction in Images , 1996, J. Vis. Commun. Image Represent..

[24]  Nicolas Passat,et al.  Grey-level hit-or-miss transforms - part II: Application to angiographic image processing , 2007, Pattern Recognit..