Continuous optimization methods for the quadratic assignment problem

TAO HUANG: Continuous Optimization Methods for the Quadratic Assignment Problem (Under the direction of Jon W. Tolle) In this dissertation we have studied continuous optimization techniques as they are applied in nonlinear 0-1 programming. Specifically, the methods of relaxation with a penalty function have been carefully investigated. When the strong equivalence properties hold, we are guaranteed an integer solution to the original 0-1 problem. The quadratic assignment problem (QAP) possesses such properties and consequently we have developed an algorithm for the QAP based on the method of relaxation using the quadratic penalty function. In our algorithm we have applied two pre-conditioning techniques that enables us to devise a scheme to find a good initial point and hence obtain good solutions to the QAP. Furthermore, we have shown how quadratic cuts can be used to improve on the current solutions. Extensive numerical results on several sets of QAP test problems (including the QAPLIB) have been reported and these results show our algorithm produces good solutions for certain classes of problems in a small amount of time.

[1]  Nelson Maculan,et al.  Lagrangean decomposition for integer nonlinear programming with linear constraints , 1991, Math. Program..

[2]  Gintaras Palubeckis,et al.  An Algorithm for Construction of Test Cases for the Quadratic Assignment Problem , 2000, Informatica.

[3]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[4]  Peter L. Hammer,et al.  Some remarks on quadratic programming with 0-1 variables , 1970 .

[5]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[6]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[7]  Reuven Y. Rubinstein,et al.  Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks , 1986 .

[8]  Vassilis Zissimopoulos,et al.  On the landscape ruggedness of the quadratic assignment problem , 2001, Theor. Comput. Sci..

[9]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[10]  Fred W. Glover,et al.  Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..

[11]  Catherine Roucairol,et al.  A New Exact Algorithm for the Solution of Quadratic Assignment Problems , 1994, Discret. Appl. Math..

[12]  Éric Soutif,et al.  Decomposition and Linearization for 0-1 Quadratic Programming , 2000, Ann. Oper. Res..

[13]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[14]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[15]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[16]  Rainer E. Burkard,et al.  Probabilistic asymptotic properties of some combinatorial optimization problems , 1985, Discret. Appl. Math..

[17]  P. Gilmore Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem , 1962 .

[18]  Henry Wolkowicz,et al.  A Recipe for Semidefinite Relaxation for , 1995 .

[19]  Warren P. Adams,et al.  Improved Linear Programming-based Lower Bounds for the Quadratic Assignment Proglem , 1993, Quadratic Assignment and Related Problems.

[20]  Robert H. Berk Assignment Methods in Combinatorial Data Analysis , 1989 .

[21]  G. Finke Quadratic Assignment Problems , 1987 .

[22]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[23]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[24]  Egon Balas,et al.  Nonlinear 0–1 programming: I. Linearization techniques , 1984, Math. Program..

[25]  Arthur M. Geoffrion,et al.  Scheduling Parallel Production Lines with Changeover Costs: Practical Application of a Quadratic Assignment/LP Approach , 1976, Oper. Res..

[26]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[27]  M. Raghavachari,et al.  On Connections Between Zero-One Integer Programming and Concave Programming Under Linear Constraints , 1969, Oper. Res..

[28]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[29]  Peter Hahn,et al.  Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation , 1998, Oper. Res..

[30]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[31]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[32]  Ernest J. McCormick,et al.  Human Factors Engineering , 1985 .

[33]  James C. T. Mao,et al.  An Extension of Lawler and Bell's Method of Discrete Optimization with Examples from Capital Budgeting , 1968 .

[34]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[35]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[36]  Leon Steinberg,et al.  The Backboard Wiring Problem: A Placement Algorithm , 1961 .

[37]  P. Hansen Methods of Nonlinear 0-1 Programming , 1979 .

[38]  Wojciech Szpankowski,et al.  Combinatorial optimization problems for which almost every algorithm is asymptotically optimal , 1995 .

[39]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[40]  F. Giannessi,et al.  Connections between Nonlinear Programming and Discrete Optimization , 1998 .

[41]  Egon Balas,et al.  Nonlinear 0–1 programming: II. Dominance relations and algorithms , 1983, Math. Program..

[42]  Wen-xing Zhu Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming , 2003 .

[43]  Federico Malucelli,et al.  A New Lower Bound for the Quadratic Assignment Problem , 1992, Oper. Res..

[44]  D. White A convex form of the quadratic assignment problem , 1993 .

[45]  A. H. Land,et al.  A Problem of Assignment with Inter-Related Costs , 1963 .

[46]  Han-Lin Li,et al.  An approximate method for local optima for nonlinear mixed integer programming problems , 1992, Comput. Oper. Res..

[47]  Jeff T. Linderoth,et al.  Solving large quadratic assignment problems on computational grids , 2002, Math. Program..

[48]  Franz Rendl,et al.  A New Lower Bound Via Projection for the Quadratic Assignment Problem , 1992, Math. Oper. Res..

[49]  Harvey M. Salkin,et al.  Foundations of integer programming , 1989 .

[50]  Thomas Stützle,et al.  New Benchmark Instances for the QAP and the Experimental Analysis of Algorithms , 2004, EvoCOP.

[51]  Martin Grötschel,et al.  Discrete mathematics in manufacturing , 1992 .

[52]  Wansoo T. Rhee A note on asymptotic properties of the quadratic assignment problem , 1988 .

[53]  Peter L. Hammer,et al.  On the Role of Generalized Covering Problems. , 1972 .

[54]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[55]  A. N. Elshafei,et al.  Hospital Layout as a Quadratic Assignment Problem , 1977 .

[56]  L. Mirsky,et al.  The spread of a matrix , 1956 .

[57]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[58]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[59]  Franz Rendl,et al.  Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem , 1992, Math. Program..

[60]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[61]  Daniel Granot,et al.  Technical Note - Generalized Covering Relaxation for 0-1 Programs , 1980, Oper. Res..

[62]  Panos M. Pardalos,et al.  Lower bounds for the quadratic assignment problem , 1994, Ann. Oper. Res..

[63]  G. Meyer Accelerated Frank–Wolfe Algorithms , 1974 .

[64]  J. Ben Rosen,et al.  Penalty formulation for zero-one nonlinear programming , 1987, Discret. Appl. Math..

[65]  Zvi Drezner,et al.  Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods , 2005, Ann. Oper. Res..

[66]  M. Bazaraa,et al.  A branch-and-bound-based heuristic for solving the quadratic assignment problem , 1983 .

[67]  S. Vajda,et al.  BOOLEAN METHODS IN OPERATIONS RESEARCH AND RELATED AREAS , 1969 .

[68]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[69]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[70]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[71]  Alexander H. G. Rinnooy Kan,et al.  Asymptotic Properties of the Quadratic Assignment Problem , 1985, Math. Oper. Res..

[72]  Federico Malucelli,et al.  A Reformulation Scheme and New Lower Bounds for the QAP , 1993, Quadratic Assignment and Related Problems.

[73]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[74]  V. Deineko,et al.  The Quadratic Assignment Problem: Theory and Algorithms , 1998 .

[75]  Thomas E. Vollmann,et al.  An Experimental Comparison of Techniques for the Assignment of Facilities to Locations , 1968, Oper. Res..

[76]  J. W. Gavett,et al.  The Optimal Assignment of Facilities to Locations by Branch and Bound , 1966, Oper. Res..

[77]  H. Sherali,et al.  Benders' partitioning scheme applied to a new formulation of the quadratic assignment problem , 1980 .

[78]  Qing Zhao Semidefinite programming for assignment and partitioning problems , 1998 .

[79]  Nelson Maculan,et al.  Lagrangean Methods for 0-1 Quadratic Problems , 1993, Discret. Appl. Math..

[80]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[81]  Rainer E. Burkard,et al.  The asymptotic probabilistic behaviour of quadratic sum assignment problems , 1983, Z. Oper. Research.

[82]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[83]  L. Kaufman,et al.  An algorithm for the quadratic assignment problem using Bender's decomposition , 1978 .

[84]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[85]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[86]  Franz Rendl,et al.  Bounds for the Quadratic Assignment Problems Using Continuous Optimization Techniques , 1990, IPCO.

[87]  Shahid H. Bokhari,et al.  Assignment Problems in Parallel and Distributed Computing , 1987 .

[88]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[89]  Nathan W. Brixius,et al.  Solving quadratic assignment problems using convex quadratic programming relaxations , 2001 .

[90]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[91]  M. Borchardt An exact penalty approach for solving a class of minimization problems with boolean variables , 1988 .

[92]  Eric Angela,et al.  On the landscape ruggedness of the quadratic assignment problem , 2001 .

[93]  Wansoo T. Rhee Stochastic Analysis of the Quadratic Assignment Problem , 1991, Math. Oper. Res..

[94]  J. Ben Rosen,et al.  Penalty for zero–one integer equivalent problem , 1982, Math. Program..

[95]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[96]  Kurt M. Anstreicher,et al.  A new bound for the quadratic assignment problem based on convex quadratic programming , 2001, Math. Program..

[97]  Hanif D. Sherali,et al.  On the Use of Exact and Heuristic Cutting Plane Methods for the Quadratic Assignment Problem , 1982 .

[98]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[99]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[100]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[101]  E. L. Lawler,et al.  A Method for Solving Discrete Optimization Problems , 1966, Oper. Res..