Finite wordlength in digital filters: A review

A review is presented of recent work on quantization and overflow effects in digital filters. These unwanted non-linear phenomena include parasitic oscillations (limit cycles) and quantization noise. Modern stabilization methods and noise optimization strategies are discussed~ A comprehensive bibliographY contains the relevant original contributions dealing with the analysis of various finite wordlength effects and measures to reduce or avoid them.

[1]  Rao K. Yarlagadda,et al.  Coefficient quantization effects on pole locations for state model digital filters , 1979, ICASSP.

[2]  S. Hwang Comments on "Reduction of Roundoff Noise in Wave Digital filters , 1975 .

[3]  L. Kristiansson,et al.  Necessary and sufficient conditions for the absence of overflow phenomena in a second-order recursive digital filter , 1975 .

[4]  W. Wegener,et al.  On the design of wave digital lattice filters with short coefficient word lengths and optimal dynamic range , 1978 .

[5]  Tatsuo Higuchi,et al.  A state-space approach for elimination of limit cycles in digital filters with arbitrary structures , 1979, ICASSP.

[7]  A. Michel,et al.  Stability analysis of fixed- point digital filters using computer generated Lyapunov functions- Part II: Wave digital filters and lattice digital filters , 1985 .

[8]  Vimal Singh Realization of two's complement overflow limit cycle free state-space digital filters: A frequency-domain viewpoint , 1986 .

[9]  E. Verriest,et al.  Error analysis of linear recursions in floating point , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  C. Barnes,et al.  Roundoff Noise Invariants in Normal Digital Filters , 1982 .

[11]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[12]  C. Barnes,et al.  Finite word effects in block-state realizations of fixed-point digital filters , 1980 .

[13]  Clifford T. Mullis,et al.  Filter structures which minimize roundoff noise in fixed point digital filters , 1976, ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Comments on "Suppression of Limit Cycles in Digital filters designed with One Magnitude-Truncation Quantizer , 1984 .

[15]  A. Lacroix Limit cycles in floating point digital filters , 1976 .

[16]  Khee Pang,et al.  Quantization phenomena in a class of complex biquad recursive digital filters , 1986 .

[17]  S. Parker,et al.  Correlated noise due to roundoff in fixed point digital filters , 1976 .

[18]  W. Lee Optimization of digital filters for low roundoff noise , 1974 .

[19]  C. Barnes Computationally efficient second-order digital filter sections with low roundoff noise gain , 1984 .

[20]  C. Charalambous,et al.  Two methods for the reduction of quantization effects in recursive digital filters , 1983 .

[21]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[22]  Irwin W. Sandberg The zero-input response of digital filters using saturation arithmetic , 1979 .

[23]  D. Mitra,et al.  Large amplitude, self-sustained oscillations in difference equations which describe digital filter sections using saturation arithmetic , 1977 .

[24]  Hon Keung Kwan,et al.  A multi-output wave - digital biquad using magnitude truncation instead of controlled rounding , 1985 .

[25]  H. Samueli,et al.  Almost period P sequences and the analysis of forced overflow oscillations in digital filters , 1982 .

[26]  A. Antoniou,et al.  A comparison of cascade and wave fixed-point digital-filter structures , 1980 .

[27]  W. Jaschinski,et al.  Some results in optimization of roundoff-noise for fixed-point digital filters realized in cascade form , 1977 .

[28]  L. Kristiansson,et al.  Improvement of overflow behaviour of 2nd-order digital filters by means of error feedback , 1974 .

[29]  D. Morgan,et al.  Effect of word-length truncation on quantized Gaussian random variables , 1986, IEEE Trans. Acoust. Speech Signal Process..

[30]  Ian H. Witten,et al.  Suppressing limit cycles in digital incremental computers , 1981 .

[31]  M. Kawamata,et al.  On the absence of limit cycles in a class of state-space digital filters which contains minimum noise realizations , 1984 .

[32]  Bounds on second-order digital filter limit cycles , 1975 .

[34]  Limit Cycles in Combinatorial Filters Using Two's Complement Truncation Arithmetic. , 1974 .

[35]  S. Parker,et al.  Computation of bounds for digital filter quantization errors , 1973 .

[36]  H. Samueli,et al.  Nonperiodic forced overflow oscillations in digital filters , 1983 .

[37]  Sanjit K. Mitra,et al.  Very low sensitivity realization of IIR digital filters using a cascade of complex all-pass structures , 1987 .

[38]  Andrew C. Callahan Random rounding: Some principles and applications , 1976, ICASSP.

[39]  Allen G. Lindgren,et al.  Optimal synthesis of second-order state-space structures for digital filters , 1979 .

[40]  W. Mecklenbrauker,et al.  Remarks on the zero-input behavior of second-order digital filters designed with one magnitude trunc , 1975 .

[41]  A. Oppenheim,et al.  Realization of digital filters using block-floating-point arithmetic , 1970 .

[42]  E. Garetti,et al.  Optimization and comparision of fixed-point implementations for first and second-order digital blocks , 1971 .

[43]  Alfred Fettweis,et al.  On parasitic oscillations in digital filters under looped conditions , 1977 .

[44]  Nick Kingsbury Erratum: Digital-filter 2nd-order element with low quantising noise for poles and zeros at low frequencies , 1973 .

[45]  A. Fettweis On the connection between multiplier word length limitation and roundoff noise in digital filters , 1972 .

[46]  Quantization Effects in Digital MTI Filters. Volume II. , 1975 .

[47]  On the stability of higher order digital filters which use saturation arithmetic , 1978, The Bell System Technical Journal.

[48]  Uwe Ullrich,et al.  Roundoff noise and dynamic range of wave digital filters , 1979 .

[49]  Dong-guang He,et al.  Novel approximations to0Σ∞|h(n)| for second order digital filters , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  A. Nishihara Low-sensitivity second-order digital filters ― Analysis and design in terms of frequency sensitivity , 1984 .

[51]  Darrell Williamson,et al.  Error feedback in a class of orthogonal polynomial digital filter structures , 1986, IEEE Trans. Acoust. Speech Signal Process..

[52]  L. Turner Elimination of constant-input limit cycles in recursive digital filters using a generalised minimum norm , 1983 .

[53]  Gian Antonio Mian,et al.  Parameter plane quantisation induced by the signal quantisation in second-order fixed-point digital filters with one quantiser , 1988 .

[54]  Robert A. Gabel,et al.  An algorithm for optimally ordering the sections of a cascade digital filter , 1976, ICASSP.

[55]  Ya. Z. Tsypkin,et al.  A Criterion for Absolute Stability of Automatic Pulse Systems with Monotonic Characteristics of the Nonlinear Element , 1964 .

[56]  R. Roberts,et al.  An interpretation of error spectrum shaping in digital filters , 1982 .

[57]  Adly T. Fam,et al.  Nonminimal realizations of fixed-point digital filters that are free of all finite word-length limit cycles , 1979 .

[58]  L. Bruton Low-sensitivity digital ladder filters , 1975 .

[59]  T. Claasen,et al.  Quantization noise analysis for fixed-point digital filters using magnitude truncation for quantization , 1975 .

[60]  Tien-Lin Chang Error-feedback digital filters , 1979 .

[61]  Bede Liu,et al.  A new hardware realization of digital filters , 1974 .

[62]  Tien-Lin Chang Correction to "Comparison of round-off noise variances in several low round-off noise digital filter structures" , 1980 .

[63]  Ahmad I. Abu-El-Haija On limit cycle amplitudes in error-feedback digital filters , 1981, ICASSP.

[64]  Edward A. Lee,et al.  On quantization effects in state-variable filter implementations , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[65]  Suppression of limit cycles in digital filters by random dither , 1983 .

[66]  K. Kammeyer Quantization error analysis of the distributed arithmetic , 1977 .

[67]  An l_m norm bound for state variables in second-order recursive digital filter , 1981 .

[68]  Correlated noise in digital filters , 1974, CDC 1974.

[69]  T. C. Chang Error spectrum shaping structures for digital filters , 1980 .

[70]  Z. Unver,et al.  A tighter practical bound on quantization errors in second-order digital filters with complex conjugate poles , 1975 .

[71]  Alfred Fettweis,et al.  On the evaluation of roundoff noise in digital filters , 1975 .

[72]  T. Claasen,et al.  Effects of quantization and overflow in recursive digital filters , 1976 .

[73]  A. Fettweis On properties of floating-point roundoff noise , 1974 .

[74]  W K Jenkins Recent advances in residue number techniques for recursive digital filtering , 1979 .

[75]  Allen M. Peterson,et al.  An approach to eliminate roundoff errors in digital filters , 1978, ICASSP.

[76]  K. Adams Elementary limit cycles with application to the testing of digital circuits , 1983 .

[77]  Effects of input-scaling on the asymptotic overflow-stability properties of second-order recursive digital filters , 1985 .

[78]  K. Mina,et al.  Control of limit cycles in recursive digital filters by randomized quantization , 1977 .

[79]  D. Williamson,et al.  A new approach for block floating-point arithmetic in recursive filters , 1985 .

[80]  M. Kawamata,et al.  A systematic approach to synthesis of limit cycle-free digital filters , 1983 .

[81]  Andreas Antoniou,et al.  More economical state-space digital-filter structures which are free of constant-input limit cycles , 1986, IEEE Trans. Acoust. Speech Signal Process..

[82]  D. V. Rao A study of coefficient quantization errors in state space digital filters , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[83]  R. King,et al.  Method to suppress limit-cycle oscillations in digital filter , 1974 .

[84]  Subharmonics and other quantization effects in periodically excited recursive digital filters , 1986 .

[85]  T. Trick,et al.  An absolute bound on limit cycles due to roundoff errors in digital filters , 1973 .

[86]  A. Michel,et al.  Stability analysis of fixed- point digital filters using computer generated Lyapunov functions- Part I: Direct form and coupled form filters , 1985 .

[87]  J. Marshall,et al.  Computer aided design and analysis of standard IIR architectures — Part III , 1982, IEEE Circuits & Systems Magazine.

[88]  Stability of coupled-form digital filter with Roundoff quantization , 1987 .

[89]  M. Etzel,et al.  The design of specialized residue classes for efficient recursive digital filter realization , 1982 .

[90]  B. J. Stanier,et al.  Roundoff noise prediction in short-wordlength fixed-point digital filters , 1978 .

[91]  A. Fink A bound on quantization errors in second-order digital filters with complex poles that is tight for small heta , 1976 .

[92]  Elimination of zero‐input limit cycles by bounding the state transition matrix , 1979 .

[93]  A. Mahanta,et al.  FIR filter structures having low sensitivity and roundoff noise , 1982 .

[94]  T. Chang A note on upper bounds on limit cycles in digital filters , 1976 .

[96]  Shu Hung Leung,et al.  On the statistics of fixed-point roundoff error , 1985, IEEE Trans. Acoust. Speech Signal Process..

[97]  D. Munson,et al.  Optimal and suboptimal error spectrum shaping for cascade-form digital filters , 1984 .

[98]  Quantisation effects in second-order wave digital filters , 1983 .

[99]  W. Ku,et al.  Floating-point coefficient sensitivity and roundoff noise of recursive digital filters realized in ladder structures , 1975 .

[100]  David S. K. Chan Constrained minimization of roundoff noise in fixed-point digital filters , 1979, ICASSP.

[101]  L. Jackson Digital filters and signal processing , 1985 .

[102]  E. Lueder,et al.  Minimizing the Round-off Noise in Digital Filters by Dynamic Programming , 1975 .

[103]  Theodoor A. C. M. Claasen Quantisation-noise analysis of digital filters with controlled quantisation , 1976 .

[104]  A. Nishihara Design of limit-cycle-free digital biquad filters , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[105]  C. Barnes On the design of optimal state-space realizations of second-order digital filters , 1984 .

[106]  F. J. Taylor,et al.  Computer aided design and analysis of standard IIR architectures — Part II , 1982, IEEE Circuits & Systems Magazine.

[107]  Hon Keung Kwan A multi-output second-order digital filter without limit cycle oscillations , 1985 .

[108]  Andreas Antoniou,et al.  Low-sensitivity digital-filter structures which are amenable to error-spectrum shaping , 1985 .

[109]  Y. C. Jenq,et al.  On the overflow problem in a second order digital filter , 1981, ICASSP.

[110]  W. Mecklenbrauker,et al.  Frequency domain criteria for the absence of zero-input limit cycles in nonlinear discrete-time systems, with applications to digital filters , 1975 .

[111]  B. Liu,et al.  ROM REALIZATION OF DIGITAL FILTERS FOR POLES NEAR THE UNIT CIRCLE. , 1978 .

[112]  S. Kawarai Advantageous estimation formula of the least roundoff noise for the cascade fixed-point digital filters , 1985 .

[113]  P. P. Vaidyanathan,et al.  An improved sufficient condition for absence of limit cycles in digital filters , 1987 .

[114]  Kenneth Steiglitz,et al.  An improved algorithm for ordering poles and zeros of fixed-point recursive digital filter , 1976 .

[115]  Leon O. Chua,et al.  Chaos in digital filters , 1988 .

[116]  Minimum unit noise gain in non-minimal state-space realizations of digital filters , 1988 .

[117]  L. Jackson,et al.  Addendum to 'Limit cycles in state-space structures for digital filters' , 1980 .

[118]  James H. Strickland,et al.  Maximum amplitude zero-input limit cycles in digital filters , 1984 .

[119]  A. Gerheim,et al.  Numerical solution of the Lyapunov equation for narrow-band digital filters , 1984 .

[120]  The determination of limit-cycles in nonlinear sampled data systems , 1976 .

[121]  S. Shinnaka,et al.  Stability domains for second-order recursive digital filters in normal form with 'matrix power' feedback , 1980 .

[122]  Limit Cycles in Second-Order Digital Filters , 1980 .

[123]  Vimal Singh,et al.  A new proof of the discrete-time bounded-real lemma and lossless bounded-real lemma , 1987 .

[125]  S. Hwang On optimization of cascade fixed-point digital filters , 1974 .

[126]  Dennis R. Morgan,et al.  Discrete-time distortion analysis of quantized sinusoids , 1985, IEEE Trans. Acoust. Speech Signal Process..

[127]  B. Liu,et al.  On roundoff error of fixed-point digital filters using sign-magnitude truncation , 1972 .

[128]  Tien-Lin Chang Comparison of round-off noise variances in several low round-off noise digital filter structures , 1980 .

[129]  Hans-Jurgen Butterweck,et al.  New second-order digital filter sections without limit cycles , 1984 .

[130]  W. Wegener,et al.  A new second-order digital filter without parasitic oscillations , 1975 .

[131]  Tien-Lin Chang,et al.  Suppression of limit cycles in digital filters designed with one magnitude-truncation quantizer , 1981 .

[132]  Y. Jenq,et al.  Minimum sensitivity realization of second order recursive digital filter , 1982 .

[133]  On the elimination of constant-input limit cycles in digital filters , 1984 .

[134]  Markku Renfors Roundoff noise in error-feedback state-space filters , 1983, ICASSP.

[135]  On the realization of two's complement overflow limit cycle free state-space digital filters , 1986, Proceedings of the IEEE.

[136]  Kotaro Hirano,et al.  Optimization of recursive cascade filters , 1976, ICASSP.

[137]  P. Sim Relationship between input-scaling and stability of the forced response of recursive digital filters , 1988 .

[138]  H. Kwan Amplitude scaling of arbitary linear digital networks , 1984 .

[139]  M. N. Shanmukha Swamy,et al.  Comparison of the effects of quantization on digital filters , 1981, ICASSP.

[140]  Additional properties of one-dimensional limit cycles , 1986 .

[141]  I. Sandberg Floating-point-roundoff accumulation in digital-filter realizations , 1967 .

[142]  C. Barnes Roundoff noise and overflow in normal digital filters , 1979 .

[143]  Jr. A. Willson Limit cycles due to adder overflow in digital filters , 1972 .

[144]  Nelson M. Blachman,et al.  The intermodulation and distortion due to quantization of sinusoids , 1985, IEEE Trans. Acoust. Speech Signal Process..

[145]  M. Buttner Elimination of limit cycles in digital filters with very low increase in the quantization noise , 1977 .

[146]  I. Sandberg,et al.  A bound on limit cycles in fixed-point implementations of digital filters , 1972 .

[147]  Estimation of error variance due to coefficient quantization of digital filters excited by random signals , 1977 .

[148]  Overflow and roundoff analysis of a very-low sensitivity digital filter structure , 1987 .

[149]  K. Mina,et al.  Control of limit cycle oscillations in second-order recursive digital filters using constrained rand , 1978 .

[150]  Tran-Thong,et al.  Error spectrum shaping in narrow-band recursive filters , 1977 .

[151]  J. Gray Passive cascaded lattice digital filters , 1980 .

[152]  G. Verkroost,et al.  On the measurement of quantization noise in digital filters , 1984 .

[153]  L. Rabiner,et al.  An algorithm for minimizing roundoff noise in cascade realizations of finite impulse response digital filters , 1973 .

[154]  L. Turner Second-order recursive digital filter that is free from all constant-input limit cycles , 1982 .

[155]  S. Yakowitz,et al.  A general method for calculating quantization error bounds due to roundoff in multivariable digital filters , 1975, IEEE Transactions on Circuits and Systems.

[156]  Ahmad I. Abu-El-Haija,et al.  Digital filter structures having low errors and simple hardware implementation , 1978 .

[157]  L. R. Rabiner,et al.  Theory of roundoff noise in cascade realizations of finite impulse response digital filters , 1973 .

[158]  Parviz Rashidi Limit cycle oscillations in digital filters , 1978 .

[159]  R. Kieburtz,et al.  Rounding and truncation limit cycles in a recursive digital filter , 1974 .

[160]  Joos Vandewalle,et al.  General bounds on parasitic oscillations in arbitrary digital filters and their application in CAD , 1984 .

[161]  R. Patney,et al.  A different look at roundoff noise in digital filters , 1980 .

[162]  Sanjit K. Mitra,et al.  Recursive digital filters with low roundoff noise , 1977 .

[163]  Sheng Hwang Dynamic range constraint in state-space digital filtering , 1975 .

[164]  Alfred Fettweis On sensitivity and roundoff noise in wave digital filters , 1974 .

[165]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[166]  A. N. Willson Error-feedback circuits for digital filters , 1976 .

[167]  Bede Liu,et al.  Limit cycles in the combinatorial implementation of digital filters , 1976 .

[168]  H. A. Ojongbede Limit-cycle constraints for recursive-digital-filter design , 1970 .

[169]  Calculation of quantization noise at non-storage nodes , 1984 .

[170]  R. Roberts,et al.  Roundoff noise in digital filters: Frequency transformations and invariants , 1976 .

[171]  Bede Liu,et al.  LOW-NOISE REALIZATIONS FOR DIGITAL FILTERS WITH POLES NEAR THE UNIT CIRCLE. , 1978 .

[172]  S. Hwang Roundoff noise in state-space digital filtering: A general analysis , 1976 .

[174]  Simulation of Digital Filters with the Aid of a Universal Program System , 1979 .

[175]  Comments on "Quantizer-induced digital controller limit cycles" , 1970 .

[176]  Gian Antonio Mian,et al.  Parameter space quantisation in fixed-point digital filters , 1986 .

[177]  C. Burrus,et al.  Roundoff noise in multirate digital filters , 1984 .

[178]  Jump Phenomena in Digital Filters , 1979 .

[179]  A. Fettweis Pseudo-passivity, sensitivity, and stability of wave digital filters , 1972 .

[181]  D. Williamson,et al.  Residue feedback in ladder and lattice filter structures , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[182]  Hj Hans Butterweck,et al.  Finite wordlength effects in digital filters , 1989 .

[183]  M. Fahmy,et al.  Limit cycle oscillations in a cascade of first-and second-order digital sections , 1975 .

[184]  Commnets on 'On the Evaluation of Roundoff Noise in digital Filters' , 1976 .

[185]  Ian H. Witten,et al.  Reducing noise in recursive digital filters by residue retention , 1978 .

[186]  A. Fettweis Roundoff noise and attenuation sensitivity in digital filters with fixed-point arithmetic , 1973 .

[187]  Uri Shaked,et al.  Small roundoff noise realization of fixed-point digital filters and controllers , 1988, IEEE Trans. Acoust. Speech Signal Process..

[188]  V. Tavsanoglu,et al.  Optimal design of state - space digital filters by simultaneous minimization of sensitivity and roundoff noise , 1984 .

[189]  Debasis Mitra A bound on limit cycles in digital filters which exploits a particular structural property of the quantization , 1977 .

[190]  Ramesh C. Agarwal,et al.  New recursive digital filter structures having very low sensitivity and roundoff noise , 1975 .

[191]  Effect of a limit cycle on an output signal , 1986 .

[192]  C. Barnes,et al.  Minimum norm recursive digital filters that are free of overflow limit cycles , 1977 .

[193]  P. Vaidyanathan,et al.  Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters , 1988 .

[194]  ACCESSIBILITY OF ZERO-INPUT LIMIT CYCLES. , 1981 .

[195]  Universal digital biquads which are free of limit cycles , 1987 .

[196]  R. Roberts,et al.  Low roundoff noise and normal realizations of fixed point IIR digital filters , 1981 .

[197]  Hou-Ming Liu Suppression of limit cycles in digital filters , 1982 .

[198]  S. Sridharan,et al.  Residue feedback in digital filters using fractional feedback coefficients , 1985, IEEE Trans. Acoust. Speech Signal Process..

[199]  Michael G. Taylor,et al.  Overflow oscillations in digital filters , 1969 .

[200]  Graham A. Jullien,et al.  Quantization error and limit cycles analysis in residue number system coded recursive filters , 1982, ICASSP.

[201]  On the quantization error bounds in second-order digital filters with complex conjugate poles , 1977 .

[202]  W. Mecklenbrauker,et al.  Second-order digital filter with only one magnitude-truncation quantiser and having practically no limit cycles , 1973 .

[203]  A. Oppenheim,et al.  A comparison of roundoff noise in floating point and fixed point digital filter realizations , 1969 .

[204]  Tien-Lin Chang On low-roundoff noise and low-sensitivity digital filter structures , 1981 .

[205]  Minimizing the roundoff‐noise in digital filters by the branch and bound method , 1979 .

[206]  A. Willson Some effects of quantization and adder overflow on the forced response of digital filters , 1972 .

[207]  Gian Antonio Mian,et al.  Effects of quantization in second-order fixed-point digital filters with two's complement truncation quantizers , 1988 .

[208]  D. V. Bhaskar Rao Analysis of coefficient quantization errors in state-space digital filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[209]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[210]  Alfred Fettweis,et al.  Passivity and losslessness in digital filtering , 1988 .

[211]  Gian Antonio Mian,et al.  A contribution to the stability analysis of second-order direct-form digital filters with magnitude truncation , 1987, IEEE Trans. Acoust. Speech Signal Process..

[212]  C. Barnes A parametric approach to the realization of second-order digital filter sections , 1985 .

[213]  Nozomu Hamada,et al.  SYNTHESIS OF LATTICE DIGITAL FILTERS BY THE STATE VARIABLE METHOD. , 1982 .

[214]  T. Kaneko Limit-cycle oscillations in floating-point digital filters , 1973 .

[215]  V. B. Lawrence,et al.  A new and interesting class of limit cycles in recursive digital filters , 1979, The Bell System Technical Journal.

[216]  M. Fahmy,et al.  Bounds on zero-input limit cycles in all-pole digital filters , 1976 .

[217]  L. E. Turner,et al.  New limit cycle bounds for digital filters , 1988 .

[218]  S. Hwang Minimum uncorrelated unit noise in state-space digital filtering , 1977 .

[219]  B. Bomar Computationally efficient low roundoff noise second-order state-space structures , 1986 .

[220]  T. Trick,et al.  A note on absolute bounds on quantization errors in fixed-point implementations of digital filters , 1975 .

[221]  L. Bruton,et al.  Elimination of granularity and overflow limit cycles in minimum norm recursive digital filters , 1980 .

[222]  I. Tokaji,et al.  Roundoff error statistics for a continuous range of multiplier coefficients , 1987 .

[223]  Ahmad I. Abu-El-Haija,et al.  Limit cycle oscillations in digital incremental computers , 1978 .

[224]  Sanjit K. Mitra,et al.  A new approach to the realization of low-sensitivity IIR digital filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[225]  A two's complement overflow limit cycle free digital filter structure , 1984 .

[226]  S. Gupta,et al.  Reduction of roundoff noise in wave digital filters , 1974 .

[227]  K. Pang,et al.  Conditions for overflow stability of a class of complex biquad digital filters , 1987 .

[229]  T. Claasen,et al.  On the stability of the forced response of digital filters with overflow nonlinearities , 1975 .

[230]  Vimal Singh A new realizability condition for limit cycle-free state-space digital filters employing saturation arithmetic , 1985 .

[231]  S. Y. Hwang Roundoff noise minimization in state-space digital filtering , 1976, ICASSP.

[232]  P. Chirlian,et al.  An analysis of errors in wave digital filters , 1981 .

[233]  E. Auer Digital filter structures free of limit cycles , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[234]  Comments on upper bounds on limit-cycles in digital filters of second order , 1985 .

[235]  K. K. Pang,et al.  Design criterion for zero-input asymptotic overflow-stability of recursive digital filters in the presence of quantization , 1985 .

[236]  Allen G. Lindgren,et al.  Fast state-space decimator with very low round-off noise , 1981 .

[237]  Debasis Mitra The absolute stability of high-order discrete-time systems utilizing the saturation nonlinearity , 1978 .

[238]  Richard A. Roberts,et al.  Reduced multiplier, low roundoff noise digital filters , 1979, ICASSP.

[239]  Lothar Thiele,et al.  Design of sensitivity and round-off noise optimal state-space discrete systems , 1984 .

[240]  R. Roberts,et al.  Digital filter realizations without overflow oscillations , 1978 .

[241]  Louis B. Wadel Simulation of Digital Filters on an Electronic Analog Computer , 1956, JACM.

[242]  Muhammad Taher Abuelma'atti The Intermodulation Due to Multicarrier Quantization , 1984, IEEE Trans. Commun..

[243]  A. Fettweis,et al.  Correction to 'Suppression of Parasitic Oscillations in Wave Digital Filters' , 1975 .

[244]  Darrell Williamson,et al.  Delay replacement in direct form structures , 1988, IEEE Trans. Acoust. Speech Signal Process..

[245]  Overflow oscillation in digital lattice filters , 1981 .

[246]  J. Gowdy,et al.  Limit cycles in digital filters , 1972 .

[247]  Hon Keung Kwan,et al.  A multi-output second-order digital filter structure for VLSI implementation , 1985 .

[248]  S. White Quantizer-induced digital controller limit cycles , 1969 .

[249]  N. Blachman Third-Order Intermodulation Due to Quantization , 1981, IEEE Trans. Commun..

[250]  Tien-Lin Chang,et al.  An error cancellation digital-filter structure and its distributed-arithmetic implementation , 1981 .

[251]  M. Delissen Model structure selection and biased estimators , 1988 .

[252]  T. Claasen,et al.  Model for the power spectral density of quantization noise , 1981 .

[253]  T. Chang Comments on "An approach to eliminate roundoff errors in digital filters" , 1980 .

[254]  J. Aggarwal,et al.  Error analysis of digital filter employing floating-point arithmetic , 1971 .

[255]  H. Butterweck On the quantization noise contributions in digital filters which are uncorrelated with the output signal , 1979 .

[256]  Correction to 'Limit Cycle Oscillations in Digital Incremental Computers' , 1979 .

[257]  A. Fettweis,et al.  Suppression of parasitic oscillations in half-synchronic wave digital filters , 1976 .

[258]  Vimal Singh Formulation of a criterion for the absence of limit cycles in digital filters designed with one quantizer , 1985 .

[259]  B. Liu,et al.  Effect of finite word length on the accuracy of digital filters--a review , 1971 .

[260]  S. Sridharan,et al.  An approach to coefficient wordlength reduction in digital filters , 1985 .

[261]  B. Bomar,et al.  Minimum roundoff noise digital filters with some power-of-two coefficients , 1984 .

[262]  B. Shenoi,et al.  Zero-input limit cycles in coupled digital filters , 1974 .

[263]  Bede Liu,et al.  Heuristic optimization of the cascade realization of fixed-point digital filters , 1975 .

[264]  A. Oppenheim,et al.  Effects of finite register length in digital filtering and the fast Fourier transform , 1972 .

[265]  M. Buettner,et al.  Some experimental results concerning random-like noise and limit-cycles in recursive digital filters , 1975 .

[266]  J. Zeman,et al.  Fast Digital Filters with Low Round-Off Noise , 1981 .

[267]  Tran Thong Finite wordlength effects in the ROM digital filter , 1976 .

[268]  Limit cycles and similarity transformation of simple digital circuits , 1983 .

[269]  Debasis Mitra,et al.  Controlled rounding arithmetics, for second-order direct-form digital filters, that eliminate all self-sustained oscillations , 1981 .

[270]  R. Kieburtz,et al.  An Experimental Study of Roundoff Effects in a Tenth-Order Recursive Digital Filter , 1973, IEEE Trans. Commun..

[271]  Alternative method to magnitude truncation in wave digital filters , 1987 .

[272]  F. Bonzanigo Comment on "Roundoff Noise and Attenation Sensitivity Digital Filters with Fixed-Point Arithmetic , 1974 .

[273]  Masayuki Kawamata,et al.  A unified approach to the optimal synthesis of fixed-point state-space digital filters , 1985, IEEE Trans. Acoust. Speech Signal Process..

[274]  L. Jackson Roundoff noise bounds derived from coefficient sensitivities for digital filters , 1976 .

[275]  S. Parker,et al.  Canonic realizations of second-order digital filters due to finite precision arithmetic , 1972 .

[276]  Clifford T. Mullis,et al.  Normal realizations of IIR digital filters , 1979, ICASSP.

[277]  B. Liu,et al.  Narrow-band recursive filters with error spectrum shaping , 1981 .

[278]  Jr. A. Willson A stability criterion for nonautonomous difference equations with application to the design of a digital FSK oscillator , 1974 .

[279]  Alfred Fettweis,et al.  Suppression of parasitic oscillations in wave digital filters , 1975 .

[280]  P. P. Vaidyanathan,et al.  Low-Noise and Low-Sensitivity Digital Filters , 1987 .

[281]  B. Bomar,et al.  Calculation of L_infty norms for scaling second-order state-space digital filter sections , 1987 .

[282]  Low-noise structures for narrow-band recursive digital filters without overflow oscillations , 1987 .

[283]  G. Verkroost A general second-order digital filter with controlled rounding to exclude limit cycles for constant input signals , 1977 .

[284]  M.J.J.C. Annegarn,et al.  Chopping operations in wave digital filters , 1975 .

[285]  L. Jackson Limit cycles in state-space structures for digital filters , 1979 .

[286]  Rashid Ansari,et al.  A class of low-noise computationally efficient recursive digital filters with applications to sampling rate alterations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[287]  Bruce W. Bomar New second-order state-space structures for realizing low roundoff noise digital filters , 1985, IEEE Trans. Acoust. Speech Signal Process..

[288]  David C. Munson,et al.  Determining exact maximum amplitude limit cycles in digital filters , 1981, ICASSP.

[289]  A. Gray,et al.  Roundoff noise characteristics of a class of orthogonal polynomial structures , 1975 .

[290]  R. Ramnarayan,et al.  Limit cycles in large moduli residue number system digital filters , 1986 .

[291]  S. Mitra,et al.  A simple method of computing the input quantization and multiplication roundoff errors in a digital filter , 1974 .

[292]  Debasis Mitra,et al.  Criteria for determining if a high-order digital filter using saturation arithmetic is free of overflow oscillations , 1977, The Bell System Technical Journal.

[293]  Jr. A. Willson Computation of the periods of forced overflow oscillations in digital filters , 1976 .

[294]  B. Liu,et al.  Error analysis of digital filters realized with floating-point arithmetic , 1969 .

[295]  K. Hirano,et al.  A new class of very low sensitivity and low roundoff noise recursive digital filter structures , 1981 .

[296]  W. Jenkins,et al.  An analysis of quantization error in digital filters based on interval algebras , 1975 .

[297]  Tatsuo Higuchi,et al.  Synthesis of minimum quantization error digital filters using floating-point arithmetic , 1983 .

[298]  U. Kleine,et al.  On the forced response stability of wave digital filters using carry-save arithmetic , 1987 .

[299]  Leland B. Jackson,et al.  On the interaction of roundoff noise and dynamic range in digital filters , 1970, Bell Syst. Tech. J..

[300]  R. Agarwal,et al.  On realization of low-pass and highpass recursive filters with low sensitivity and low roundoff noise , 1986 .

[302]  Laxmi N. Bhuyan,et al.  Very low sensitivity recursive digital filter structures , 1981 .

[303]  E. Liu,et al.  Stability, dynamic range, and roundoff noise in a new second-order recursive digital filter , 1983 .

[304]  L. Jackson Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form , 1970 .

[305]  R. Nouta C. De Vaal,et al.  On the suppression of zero-input parasitic oscillations in floating point wave digital filters , 1980 .

[306]  C. Barnes Error feedback in normal realization of recursive digital filters , 1981 .

[307]  Masayuki Kawamata,et al.  Synthesis of minimum sensitivity structures in linear systems using controllability and observability measures , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[308]  T. L. Chang A unified analysis of roundoff noise reduction in digital filters , 1981, ICASSP.

[309]  J. I. Acha,et al.  Parasitic oscillations in normalized digital structures , 1986 .

[310]  A bound on the norm of the individual state variables of a digital filter , 1985 .

[311]  R. Rabenstein,et al.  Stability of recursive time-varying digital filters by state vector transformation , 1985 .

[312]  Sanjit K. Mitra,et al.  A new approach to the design of cost-optimal low-noise digital filters , 1981 .

[313]  Darrell Williamson,et al.  Roundoff noise minimization and pole-zero sensitivity in fixed-point digital filters using residue feedback , 1986, IEEE Trans. Acoust. Speech Signal Process..