The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension

We introduce the weak gap property for directed graphs whose vertex set S is a metric space of size n. We prove that, if the doubling dimension of S is a constant, any directed graph satisfying the weak gap property has O(n) edges and total weight $O( \log n ) \cdot wt({\mathord{\it MST}}(S))$, where $wt({\mathord{\it MST}}(S))$ denotes the weight of a minimum spanning tree of S. We show that 2-optimal TSP tours and greedy spanners satisfy the weak gap property.

[1]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[2]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[3]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[4]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[5]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[6]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[7]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[8]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[9]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[10]  Craig A. Tovey,et al.  New Results on the Old k-opt Algorithm for the Traveling Salesman Problem , 1999, SIAM J. Comput..

[11]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, SWAT.

[12]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[13]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[14]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..

[15]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[16]  José Soares,et al.  Approximating Euclidean distances by small degree graphs , 1994, Discret. Comput. Geom..

[17]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[18]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[19]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[20]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.