Combining Higher-Order and First-Order Computation Using Rho Calculus: Towards a Semantics of ELAN

The recently introduced rewriting calculus permits to express in a uniform and simple way first-order rewriting, lambda-calculus and non-deterministic computations as well as their combination. In this work, we recall the main properties of the rewriting calculus and we give a full first-order presentation of this rewriting calculus using an explicit substitution setting that generalizes the lambda-sigma-calculus. Its basic properties in the untyped as well as typed cases are presented. We then detail how to use the rewriting calculus to give an operational semantics to the rewrite based language ELAN.

[1]  Marian Vittek Elan : un cadre logique pour le prototypage de langages de programmation avec contraintes , 1994 .

[2]  Pierre Falzon,et al.  Institut national de recherche en informatique et en automatique , 1992 .

[3]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[4]  V. Breazu-Tannen,et al.  Combining algebra and higher-order types , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[5]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[6]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[7]  MeseguerJosé Conditional rewriting logic as a unified model of concurrency , 1992 .

[8]  Bruno Pagano,et al.  X.R.S : Explicit Reduction Systems - A First-Order Calculus for Higher-Order Calculi , 1998, CADE.

[9]  C. Kirchner,et al.  Higher-order unification via explicit substitutions Extended Abstract , 1995, LICS 1995.

[10]  C. Kirchner,et al.  Deduction with symbolic constraints , 1990 .

[11]  Ataru T. Nakagawa,et al.  An Overview of Cafe Project , 1997 .

[12]  Claude Kirchner,et al.  A Functional View of Rewriting and Strategies for a Semantics of ELAN , 1998, Fuji International Symposium on Functional and Logic Programming.

[13]  Jean-Pierre Jouannaud,et al.  Abstract Data Type Systems , 1997, Theor. Comput. Sci..

[14]  Vincent van Oostrom,et al.  Comparing Combinatory Reduction Systems and Higher-order Rewrite Systems , 1993, HOA.

[15]  Mitsuhiro Okada,et al.  Strong normalizability for the combined system of the typed lmbda calculus and an arbitrary convergent term rewrite system , 1989, ISSAC '89.

[16]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[17]  Eelco Visser,et al.  A core language for rewriting , 1998, WRLA.

[18]  Val Tannen,et al.  Polymorphic Rewriting Conserves Algebraic Strong Normalization and Confluence Val Tannen , 2011 .

[19]  Leon Moonen,et al.  Implementation of a prototype for the new ASF+SDF meta-environment , 1997 .

[20]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[21]  Gerard P. Hubt A mechanization of type theory , 1973, IJCAI 1973.

[22]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[23]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[24]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[25]  Gérard P. Huet,et al.  A Mechanization of Type Theory , 1973, IJCAI.

[26]  Alfred V. Aho,et al.  Code optimization and finite church-rosser systems , 1971 .