Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier

[1]  G. Bilbe,et al.  Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases , 2020, Seminars in Immunopathology.

[2]  H. Ishikawa,et al.  A Simple Approach to Perform TEER Measurements Using a Self-Made Volt-Amperemeter with Programmable Output Frequency. , 2019, Journal of visualized experiments : JoVE.

[3]  S. Citi The mechanobiology of tight junctions , 2019, Biophysical Reviews.

[4]  S. Aksoy Tsetse peritrophic matrix influences for trypanosome transmission , 2019, Journal of insect physiology.

[5]  M. Carrington,et al.  Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms , 2019, eLife.

[6]  Terry K. Smith,et al.  Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing , 2019, Cell.

[7]  M. Duszenko,et al.  Morphological changes, nitric oxide production, and phagocytosis are triggered in vitro in microglia by bloodstream forms of Trypanosoma brucei , 2018, Scientific Reports.

[8]  A. Ozcan,et al.  Parasite motility is critical for virulence of African trypanosomes , 2018, Scientific Reports.

[9]  Stella Y. Sun,et al.  Flagellum couples cell shape to motility in Trypanosoma brucei , 2018, Proceedings of the National Academy of Sciences.

[10]  Giuliano Cecchi,et al.  Human African trypanosomiasis , 2017, The Lancet.

[11]  H. Wolburg,et al.  African trypanosomes and brain infection – the unsolved question , 2017, Biological reviews of the Cambridge Philosophical Society.

[12]  C. Dey,et al.  Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani. , 2017, Molecular and biochemical parasitology.

[13]  A. MacLeod,et al.  The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes , 2016, eLife.

[14]  Terry K. Smith,et al.  Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice , 2016, Cell host & microbe.

[15]  H. Ishikawa,et al.  A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side. , 2016, Journal of visualized experiments : JoVE.

[16]  D. Molyneux,et al.  Beyond Tsetse--Implications for Research and Control of Human African Trypanosomiasis Epidemics. , 2016, Trends in parasitology.

[17]  D. Masiga,et al.  Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host , 2016, PLoS pathogens.

[18]  H. Ishikawa,et al.  The choroid plexus may be an underestimated site of tumor invasion to the brain: an in vitro study using neuroblastoma cell lines , 2015, Cancer Cell International.

[19]  Britta Engelhardt,et al.  Brain barriers: Crosstalk between complex tight junctions and adherens junctions , 2015, The Journal of cell biology.

[20]  K. Narita,et al.  Cilia in the choroid plexus: their roles in hydrocephalus and beyond , 2015, Front. Cell. Neurosci..

[21]  Mandy B. Esch,et al.  TEER Measurement Techniques for In Vitro Barrier Model Systems , 2015, Journal of laboratory automation.

[22]  F. Checchi,et al.  Human African Trypanosomiasis Presenting at Least 29 Years after Infection—What Can This Teach Us about the Pathogenesis and Control of This Neglected Tropical Disease? , 2014, PLoS neglected tropical diseases.

[23]  H. Wolburg,et al.  The lane to the brain: how African trypanosomes invade the CNS. , 2014, Trends in parasitology.

[24]  P. Simarro,et al.  Epidemiology of human African trypanosomiasis , 2014, Clinical epidemiology.

[25]  H. Wolburg,et al.  Cyclical Appearance of African Trypanosomes in the Cerebrospinal Fluid: New Insights in How Trypanosomes Enter the CNS , 2014, PloS one.

[26]  Michael P. Barrett,et al.  In Vivo Imaging of Trypanosome-Brain Interactions and Development of a Rapid Screening Test for Drugs against CNS Stage Trypanosomiasis , 2013, PLoS neglected tropical diseases.

[27]  P. Kennedy Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness) , 2013, The Lancet Neurology.

[28]  H. Wolburg,et al.  Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro , 2013, Journal of Neuroinflammation.

[29]  H. Stark,et al.  Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream , 2012, PLoS pathogens.

[30]  J. Raper,et al.  Early Invasion of Brain Parenchyma by African Trypanosomes , 2012, PloS one.

[31]  Y. Urade,et al.  Late Stage Infection in Sleeping Sickness , 2012, PloS one.

[32]  H. Wolburg,et al.  Brain infection by African trypanosomes during sleeping sickness , 2012 .

[33]  H. Wolburg,et al.  Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier , 2012, PloS one.

[34]  Stephan Herminghaus,et al.  Impact of Microscopic Motility on the Swimming Behavior of Parasites: Straighter Trypanosomes are More Directional , 2011, PLoS Comput. Biol..

[35]  H. Ishikawa,et al.  Establishment and characterization of a human malignant choroids plexus papilloma cell line (HIBCPP) , 2008, Human Cell.

[36]  P. Kennedy,et al.  Traversal of human and animal trypanosomes across the blood-brain barrier , 2011, Journal of NeuroVirology.

[37]  S. Liddelow,et al.  Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica , 2010, Cerebrospinal Fluid Research.

[38]  W. de Souza,et al.  Review on Trypanosoma cruzi: Host Cell Interaction , 2010, International journal of cell biology.

[39]  Amanda M. Brown,et al.  Protease Activated Receptor Signaling Is Required for African Trypanosome Traversal of Human Brain Microvascular Endothelial Cells , 2009, PLoS neglected tropical diseases.

[40]  J. Donelson,et al.  A Function for a Specific Zinc Metalloprotease of African Trypanosomes , 2007, PLoS pathogens.

[41]  M. Duszenko,et al.  Death of a trypanosome: a selfish altruism. , 2006, Trends in parasitology.

[42]  J. Scharfstein,et al.  Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. , 2006, The Journal of clinical investigation.

[43]  G. V. van Dooren,et al.  Regulation of surface coat exchange by differentiating African trypanosomes. , 2006, Molecular and biochemical parasitology.

[44]  Christine Clayton,et al.  A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. , 2005, Molecular and biochemical parasitology.

[45]  S. Ito,et al.  AFRICAN TRYPANOSOME INTERACTIONS WITH AN IN VITRO MODEL OF THE HUMAN BLOOD–BRAIN BARRIER , 2004, The Journal of parasitology.

[46]  A. McDonald,et al.  Branched Mitochondrial Electron Transport in the Animalia: Presence of Alternative Oxidase in Several Animal Phyla , 2004, IUBMB life.

[47]  H. Schmidt,et al.  African trypanosomiasis: Haematogenic brain parasitism early in experimental infection through bypassing the blood-brain barrier, with considerations on brain trypanosomiasis in man , 2004, Parasitology Research.

[48]  C. Engelbertz,et al.  Porcine choroid plexus epithelial cells in culture: Regulation of barrier properties and transport processes , 2001, Microscopy research and technique.

[49]  W. Stetler-Stevenson,et al.  Matrix metalloproteinases and metastasis , 1999, Cancer Chemotherapy and Pharmacology.

[50]  M. Boshart,et al.  Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. , 1997, Molecular and biochemical parasitology.

[51]  J. Seed,et al.  A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes. , 1997, The Journal of parasitology.

[52]  P. Selzer,et al.  Down regulation of S-adenosyl-L-methionine decarboxylase activity of Trypanosoma brucei during transition from long slender to short stumpy-like forms in axenic culture. , 1996, European journal of cell biology.

[53]  D. Begg,et al.  Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. , 1994, Journal of cell science.

[54]  V. Pentreath,et al.  Survival of Trypanosoma brucei brucei in cerebrospinal fluid. , 1992, Annals of tropical medicine and parasitology.

[55]  D. Mecke,et al.  Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. , 1990, Molecular and biochemical parasitology.

[56]  K. Kristensson,et al.  Spread of Trypanosoma brucei to the nervous system: Early attack on circumventricular organs and sensory ganglia , 1988, Journal of neuroscience research.

[57]  D. Molyneux,et al.  Development of Trypanosoma brucei in suckling mouse brain following intracerebral injection. , 1987, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[58]  H. Schmidt,et al.  African trypanosomiasis: treatment-induced invasion of brain and encephalitis. , 1985, The American journal of tropical medicine and hygiene.

[59]  P. Dukes,et al.  A "healthy carrier" of Trypanosoma rhodesiense: a case report. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[60]  S. Croft,et al.  Anti-trypanosomal factor in the haemolymph of Glossina. , 1982, Acta tropica.

[61]  P. Onyango,et al.  Development of Trypanosoma (Trypanozoon) brucei in Glossina morsitans inoculated into the tsetse haemocoel. , 1976, Acta tropica.

[62]  A. S. Mshelbwala Trypanosoma brucei infection in the haemocoel of tsetse flies. , 1972, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[63]  M. Lavoipierre Feeding Mechanism of Blood-sucking Arthropods , 1965, Nature.

[64]  R. Ross,et al.  A Case of Sleeping Sickness Studied by Precise Enumerative Methods: Regular Periodical Increase of the Parasites Disclosed , 1910 .