Lattice polytopes in coding theory

In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also prove a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.

[1]  Hal Schenck,et al.  Toric Surface Codes and Minkowski Sums , 2006, SIAM J. Discret. Math..

[2]  Ivan Soprunov,et al.  Toric Surface Codes and Minkowski Length of Polygons , 2008, SIAM J. Discret. Math..

[3]  Cem Güneri Algebraic geometric codes: basic notions , 2008 .

[4]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[5]  Josh Whitney A bound on the minimum distance of three dimensional toric codes , 2010 .

[6]  John B. Little,et al.  Remarks on generalized toric codes , 2011, Finite Fields Their Appl..

[7]  Matthew Grimm,et al.  Minkowski Length of 3D Lattice Polytopes , 2012, Discret. Comput. Geom..

[8]  Diego Ruano,et al.  On the structure of generalized toric codes , 2006, J. Symb. Comput..

[9]  Gavin Brown,et al.  Seven new champion linear codes , 2012, ArXiv.

[10]  Valérie Gauthier,et al.  Dual Toric Codes and Polytopes of Degree One , 2014, SIAM J. Discret. Math..

[11]  Diego Ruano,et al.  On the parameters of r-dimensional toric codes , 2005, Finite Fields Their Appl..

[12]  Ivan Soprunov,et al.  Bringing Toric Codes to the Next Dimension , 2009, SIAM J. Discret. Math..

[13]  Gavin Brown,et al.  Small polygons and toric codes , 2012, J. Symb. Comput..

[14]  Xue Luo,et al.  On classification of toric surface codes of low dimension , 2014, Finite Fields Their Appl..

[15]  David Joyner,et al.  Toric Codes over Finite Fields , 2002, Applicable Algebra in Engineering, Communication and Computing.

[16]  Johan P. Hansen,et al.  Toric Varieties Hirzebruch Surfaces and Error-Correcting Codes , 2002, Applicable Algebra in Engineering, Communication and Computing.

[17]  John Little,et al.  On toric codes and multivariate Vandermonde matrices , 2007, Applicable Algebra in Engineering, Communication and Computing.

[18]  M. Tsfasman,et al.  Algebraic Geometric Codes: Basic Notions , 2007 .

[19]  Johan P. Hansen,et al.  Toric Surfaces and Error-correcting Codes , 2000 .