A Traversable Wormhole from the Kerr Black Hole

The approach of Gao, Jafferis, and Wall to perturbatively construct traversable wormholes has seen success in a number of black hole backgrounds, particularly BTZ and $AdS_2$, whereas historically most wormhole solutions have been either found to violate the achronal ANEC, violate a classical no-go theorem, or exist only in astrophysically irrelevant spacetimes. In this work, we show that a double-trace deformation to the near-horizon, near-extremal region of Kerr yields a traversable wormhole. We also comment on the potential for a fully nonperturbative approach to a four-dimensional rotating traversable wormhole in asymptotically flat space.

[1]  E. Winstanley,et al.  Superradiance and quantum states on black hole space-times , 2023, Journal of Physics: Conference Series.

[2]  J. Lykken,et al.  Traversable wormhole dynamics on a quantum processor , 2022, Nature.

[3]  Keun-Young Kim,et al.  Holographic teleportation with conservation laws: diffusion on traversable wormholes , 2022, 2206.03434.

[4]  A. Strominger,et al.  Holography of the photon ring , 2022, Classical and Quantum Gravity.

[5]  R. Bousso,et al.  Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence of Spacetime , 2022, 2201.03096.

[6]  R. Emparan,et al.  Multi-mouth traversable wormholes , 2020, Journal of High Energy Physics.

[7]  D. Marolf,et al.  Traversability of multi-boundary wormholes , 2020, Journal of High Energy Physics.

[8]  Dietrich Hafner,et al.  The Unruh state for massless fermions on Kerr spacetime and its Hadamard property , 2020, Annales scientifiques de l'École Normale Supérieure.

[9]  J. Maldacena,et al.  Humanly traversable wormholes , 2020, Physical Review D.

[10]  J. Maldacena Comments on magnetic black holes , 2020, Journal of High Energy Physics.

[11]  D. Marolf,et al.  Simple perturbatively traversable wormholes from bulk fermions , 2019, Journal of High Energy Physics.

[12]  D. Marolf,et al.  Traversable asymptotically flat wormholes with short transit times , 2019, Classical and Quantum Gravity.

[13]  A. Lupsasca,et al.  Particle motion near high-spin black holes , 2019, Classical and Quantum Gravity.

[14]  Diandian Wang,et al.  Creating a traversable wormhole , 2019, Classical and Quantum Gravity.

[15]  A. Strominger,et al.  Polarization whorls from M87* at the event horizon telescope , 2018, Proceedings of the Royal Society A.

[16]  D. Marolf,et al.  A perturbative perspective on self-supporting wormholes , 2018, Classical and Quantum Gravity.

[17]  E. Cáceres,et al.  Rotating traversable wormholes in AdS , 2018, Journal of High Energy Physics.

[18]  Juan Maldacena,et al.  Traversable wormholes in four dimensions , 2018, Classical and Quantum Gravity.

[19]  S. Yi,et al.  Bulk view of teleportation and traversable wormholes , 2018, Journal of High Energy Physics.

[20]  Xiao-Liang Qi,et al.  Eternal traversable wormhole , 2018, 1804.00491.

[21]  A. Strominger,et al.  Observational signature of high spin at the Event Horizon Telescope , 2017, 1710.11112.

[22]  Zhenbin Yang,et al.  Diving into traversable wormholes , 2017, 1704.05333.

[23]  Thomas Hartman,et al.  Averaged null energy condition from causality , 2016, Journal of High Energy Physics.

[24]  Aron C. Wall,et al.  Traversable wormholes via a double trace deformation , 2016, Journal of High Energy Physics.

[25]  Onkar Parrikar,et al.  Modular Hamiltonians for deformed half-spaces and the averaged null energy condition , 2016, 1605.08072.

[26]  Stefanos Aretakis,et al.  A note on instabilities of extremal black holes under scalar perturbations from afar , 2012, 1212.1103.

[27]  H. Reall,et al.  Gravitational instability of an extreme Kerr black hole , 2012, 1208.1437.

[28]  A. Ottewill,et al.  Quantization of fermions on Kerr space-time , 2012, 1207.7089.

[29]  J. Rasmussen A near-nhek/cft correspondence , 2010, 1004.4773.

[30]  Wei Song,et al.  Holographic derivation of Kerr-Newman scattering amplitudes for general charge and spin , 2009, 0908.3909.

[31]  Wei Song,et al.  Black hole superradiance from Kerr/CFT , 2009, 0907.3477.

[32]  H. Reall,et al.  Kerr-CFT and gravitational perturbations , 2009, 0906.2380.

[33]  D. Marolf,et al.  No dynamics in the extremal Kerr throat , 2009, 0906.2376.

[34]  Wei Song,et al.  Kerr/CFT Correspondence , 2008, 0809.4266.

[35]  M. Padi,et al.  Warped AdS3 black holes , 2008, 0807.3040.

[36]  N. Graham,et al.  Achronal averaged null energy condition , 2007, 0705.3193.

[37]  O. Aharony,et al.  Non-Local Effects of Multi-Trace Deformations in the AdS/CFT Correspondence , 2005, hep-th/0504177.

[38]  A. Ottewill,et al.  Renormalized stress tensor in Kerr space-time: General results , 2000, gr-qc/0004022.

[39]  J. Bardeen,et al.  Extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2 , 1999, hep-th/9905099.

[40]  A. Strominger,et al.  Vacuum states for AdS2 black holes , 1999, hep-th/9904143.

[41]  J. Maldacena,et al.  Anti-de Sitter fragmentation , 1998, hep-th/9909069.

[42]  T. Nakatsu,et al.  COMMENTS ON HAMILTONIAN FORMALISM OF AdS/CFT CORRESPONDENCE , 1998, hep-th/9812047.

[43]  R. Wald,et al.  Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon , 1991 .

[44]  Frolov,et al.  Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. , 1989, Physical review. D, Particles and fields.

[45]  P. Candelas,et al.  Quantization of electromagnetic and gravitational perturbations of a Kerr black hole , 1981 .

[46]  P. Davies,et al.  Quantum field theory in curved space–time , 1976 .

[47]  D. Pavón The Entropy of Hawking Radiation , 1987 .