Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity

[1]  S. Srikantan,et al.  The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. , 2014, Human molecular genetics.

[2]  M. Heymann,et al.  Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. , 2014, The Journal of clinical endocrinology and metabolism.

[3]  K. Heimdal,et al.  Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. , 2014, European journal of endocrinology.

[4]  P. Dahia The genetic landscape of pheochromocytomas and paragangliomas: somatic mutations take center stage. , 2013, The Journal of clinical endocrinology and metabolism.

[5]  G. Cote,et al.  The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. , 2013, The Journal of clinical endocrinology and metabolism.

[6]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[7]  Dudley Lamming,et al.  A Central role for mTOR in lipid homeostasis. , 2013, Cell metabolism.

[8]  R. Deberardinis,et al.  The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. , 2013, Molecular cell.

[9]  A. Tabarin,et al.  One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. , 2013, The Journal of clinical endocrinology and metabolism.

[10]  Thomas M. Wasylenko,et al.  Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells , 2013, Nature Communications.

[11]  K. Shokat,et al.  Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers , 2013, Proceedings of the National Academy of Sciences.

[12]  Laurence Amar,et al.  SDH mutations establish a hypermethylator phenotype in paraganglioma. , 2013, Cancer cell.

[13]  S. Srikantan,et al.  In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. , 2013, Endocrine-related cancer.

[14]  E. Maher HIF2 and endocrine neoplasia: an evolving story. , 2013, Endocrine-related cancer.

[15]  E. Baudin,et al.  Current and Future Treatments for Malignant Pheochromocytoma and Sympathetic Paraganglioma , 2013, Current Oncology Reports.

[16]  P. Hellman,et al.  Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. , 2013, The Journal of clinical endocrinology and metabolism.

[17]  B. Baysal Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. , 2013, Biochimica et biophysica acta.

[18]  G. Cecchini Respiratory complex II: role in cellular physiology and disease. , 2013, Biochimica et biophysica acta.

[19]  A. Tischler,et al.  New syndrome of paraganglioma and somatostatinoma associated with polycythemia. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Leslie G. Biesecker,et al.  A genomic view of mosaicism and human disease , 2013, Nature Reviews Genetics.

[21]  P. Meltzer,et al.  Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. , 2013, Cancer discovery.

[22]  D. Love,et al.  Novel mutation in the TMEM127 gene associated with phaeochromocytoma , 2013, Internal medicine journal.

[23]  K. Pacak,et al.  First report of bilateral pheochromocytoma in the clinical spectrum of HIF2A-related polycythemia-paraganglioma syndrome. , 2013, The Journal of clinical endocrinology and metabolism.

[24]  D. Fraker,et al.  Inherited Mutations in Pheochromocytoma and Paraganglioma: Why All Patients Should Be Offered Genetic Testing , 2013, Annals of Surgical Oncology.

[25]  G. Pita,et al.  Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. , 2013, Human molecular genetics.

[26]  W. Kaelin,et al.  The VHL/HIF axis in clear cell renal carcinoma. , 2013, Seminars in cancer biology.

[27]  J. Nyengaard,et al.  SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET. , 2013, Cell reports.

[28]  L. Mulligan,et al.  Multiple Functional Effects of RET Kinase Domain Sequence Variants in Hirschsprung Disease , 2013, Human mutation.

[29]  J. Prchal,et al.  A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma , 2013, Journal of Molecular Medicine.

[30]  Y. Bang,et al.  Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas , 2012, Cancer.

[31]  E. Letouzé,et al.  Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. , 2012, Human molecular genetics.

[32]  C. Larsson,et al.  Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. , 2012, Human molecular genetics.

[33]  A. Gimenez-Roqueplo,et al.  HIF2A mutations in paraganglioma with polycythemia. , 2012, The New England journal of medicine.

[34]  G. Semenza,et al.  Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression , 2012, Proceedings of the National Academy of Sciences.

[35]  H. Shimano,et al.  Identical germline mutations in the TMEM127 gene in two unrelated Japanese patients with bilateral pheochromocytoma , 2012, Clinical endocrinology.

[36]  K. Brown,et al.  A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma , 2012, Pigment cell & melanoma research.

[37]  M. Korbonits,et al.  Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. , 2012, Journal of molecular endocrinology.

[38]  E. Baudin,et al.  Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. , 2012, The Journal of clinical endocrinology and metabolism.

[39]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[40]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[41]  Electron Kebebew,et al.  Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. , 2012, The New England journal of medicine.

[42]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[43]  Mercedes Robledo,et al.  MAX and MYC: a heritable breakup. , 2012, Cancer research.

[44]  Hui Yang,et al.  Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. , 2012, Genes & development.

[45]  Morag Park,et al.  Dynamics of receptor trafficking in tumorigenicity. , 2012, Trends in cell biology.

[46]  A. Vénisse,et al.  A Decade (2001–2010) of Genetic Testing for Pheochromocytoma and Paraganglioma , 2012, Hormone and Metabolic Research.

[47]  X. Jeunemaître,et al.  Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. , 2012, The Journal of clinical endocrinology and metabolism.

[48]  M. Urioste,et al.  MAX Mutations Cause Hereditary and Sporadic Pheochromocytoma and Paraganglioma , 2012, Clinical Cancer Research.

[49]  H. Affres,et al.  TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. , 2012, The Journal of clinical endocrinology and metabolism.

[50]  B. Wilson,et al.  Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1 , 2012, Proceedings of the National Academy of Sciences.

[51]  P. Dahia,et al.  An Update on the Genetics of Paraganglioma, Pheochromocytoma, and Associated Hereditary Syndromes , 2012, Hormone and Metabolic Research.

[52]  E. Baudin,et al.  Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[54]  E. Maher,et al.  The genetics of phaeochromocytoma: using clinical features to guide genetic testing. , 2011, European journal of endocrinology.

[55]  P. Söderkvist,et al.  Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. , 2011, Endocrine-related cancer.

[56]  G. Cote,et al.  Management of medullary thyroid carcinoma and MEN2 syndromes in childhood , 2011, Nature Reviews Endocrinology.

[57]  A. Vénisse,et al.  Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. , 2011, Human molecular genetics.

[58]  J. Benítez,et al.  Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma , 2011, Nature Genetics.

[59]  H. Moch,et al.  VHL gene mutations and their effects on hypoxia inducible factor HIFα: identification of potential driver and passenger mutations. , 2011, Cancer research.

[60]  Rameen Beroukhim,et al.  Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. , 2011, Cancer discovery.

[61]  C. Eng,et al.  Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. , 2011, The Journal of clinical endocrinology and metabolism.

[62]  William Y. Kim,et al.  Two sides to every story: the HIF-dependent and HIF-independent functions of pVHL , 2011, Journal of cellular and molecular medicine.

[63]  C. Ricketts,et al.  Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility , 2010, Endocrine-related cancer.

[64]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[65]  A. Hernigou,et al.  A novel TMEM127 mutation in a patient with familial bilateral pheochromocytoma. , 2011, European journal of endocrinology.

[66]  C. Antonescu,et al.  Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations , 2010, Proceedings of the National Academy of Sciences.

[67]  S. Gruber,et al.  Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. , 2010, JAMA.

[68]  Agnieszka Maliszewska,et al.  Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. , 2010, Molecular endocrinology.

[69]  P. Bénit,et al.  SDHA is a tumor suppressor gene causing paraganglioma. , 2010, Human molecular genetics.

[70]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[71]  P. Dahia,et al.  Mutations of the metabolic genes IDH1, IDH2, and SDHAF2 are not major determinants of the pseudohypoxic phenotype of sporadic pheochromocytomas and paragangliomas. , 2010, The Journal of clinical endocrinology and metabolism.

[72]  W. Dinjens,et al.  Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. , 2010, The Journal of clinical endocrinology and metabolism.

[73]  Patricia L. M. Dahia,et al.  Germline mutations in TMEM127 confer susceptibility to pheochromocytoma , 2010, Nature Genetics.

[74]  P. M. Dahia,et al.  VHL disease. , 2010, Best practice & research. Clinical endocrinology & metabolism.

[75]  P. Bénit,et al.  The Warburg Effect Is Genetically Determined in Inherited Pheochromocytomas , 2009, PloS one.

[76]  Steven P. Gygi,et al.  SDH5, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma , 2009, Science.

[77]  H. Gharib,et al.  Medullary thyroid cancer: management guidelines of the American Thyroid Association. , 2009, Thyroid : official journal of the American Thyroid Association.

[78]  W. Linehan,et al.  Fumarate Hydratase Deficiency in Renal Cancer Induces Glycolytic Addiction and Hypoxia-Inducible Transcription Factor 1α Stabilization by Glucose-Dependent Generation of Reactive Oxygen Species , 2009, Molecular and Cellular Biology.

[79]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[80]  W. Kaelin Treatment of kidney cancer , 2009, Cancer.

[81]  D. Connolly,et al.  The role of the GPR91 ligand succinate in hematopoiesis , 2009, Journal of leukocyte biology.

[82]  Greg Finak,et al.  Regulation of endocytosis via the oxygen-sensing pathway , 2009, Nature Medicine.

[83]  F. Galateau-Sallé,et al.  PHD2 mutation and congenital erythrocytosis with paraganglioma. , 2008, The New England journal of medicine.

[84]  Brian Keith,et al.  HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. , 2008, Cancer cell.

[85]  C. Eng,et al.  Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC>TGG) mutation. , 2008, Endocrine-related cancer.

[86]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[87]  X. Mu,et al.  The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis , 2008, Nature Medicine.

[88]  A. Ligon,et al.  A germline mutation of the KIF1Bβ gene on 1p36 in a family with neural and nonneural tumors , 2008, Human Genetics.

[89]  M. Meyerson,et al.  The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. , 2008, Genes & development.

[90]  S A Forbes,et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC) , 2008, Current protocols in human genetics.

[91]  M. McMullin,et al.  A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. , 2008, The New England journal of medicine.

[92]  C. Johannessen,et al.  TORC1 Is Essential for NF1-Associated Malignancies , 2008, Current Biology.

[93]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[94]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[95]  Rosalie E Ferner Neurofibromatosis 1 , 2010, European Journal of Human Genetics.

[96]  R. Janknecht,et al.  Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma , 2007 .

[97]  N. Chandel,et al.  Loss of the SdhB, but Not the SdhA, Subunit of Complex II Triggers Reactive Oxygen Species-Dependent Hypoxia-Inducible Factor Activation and Tumorigenesis , 2007, Molecular and Cellular Biology.

[98]  A. Tischler,et al.  Pheochromocytomas in Nf1 knockout mice express a neural progenitor gene expression profile , 2007, Neuroscience.

[99]  John D Gordan,et al.  HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. , 2007, Cancer cell.

[100]  Charis Eng,et al.  Cancer phenomics: RET and PTEN as illustrative models , 2007, Nature Reviews Cancer.

[101]  G. Stamp,et al.  Expression of HIF-1α, HIF-2α (EPAS1), and Their Target Genes in Paraganglioma and Pheochromocytoma with VHL and SDH Mutations , 2006 .

[102]  J. Zondlo,et al.  Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Douglas S. Richardson,et al.  RET ligand-induced internalization and its consequences for downstream signaling , 2006, Oncogene.

[104]  E. Gottlieb,et al.  Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. , 2006, Biochimica et biophysica acta.

[105]  M. Gruber,et al.  Hypoxia-inducible factors, hypoxia, and tumor angiogenesis , 2006, Current opinion in hematology.

[106]  N. Denko,et al.  HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. , 2006, Cell metabolism.

[107]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[108]  R. Toledo,et al.  Impact of RET proto-oncogene analysis on the clinical management of multiple endocrine neoplasia type 2. , 2006, Clinics.

[109]  G. Stamp,et al.  Expression of HIF-1alpha, HIF-2alpha (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations. , 2006, The Journal of clinical endocrinology and metabolism.

[110]  M. Pujana,et al.  Novel pheochromocytoma susceptibility loci identified by integrative genomics. , 2005, Cancer research.

[111]  W. Kaelin,et al.  Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. , 2005, Cancer cell.

[112]  J R Griffiths,et al.  Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. , 2005, Human molecular genetics.

[113]  Nancy D Perrier,et al.  RET proto-oncogene: a review and update of genotype-phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. , 2005, Thyroid : official journal of the American Thyroid Association.

[114]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[115]  Sandro Santagata,et al.  A HIF1α Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas , 2005, PLoS genetics.

[116]  Yuen-Li Chung,et al.  HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. , 2005, Cancer cell.

[117]  A. Harris,et al.  HIF-2alpha expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. , 2005, Experimental cell research.

[118]  Okio Hino,et al.  A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. , 2005, Cancer research.

[119]  Andrew L. Kung,et al.  A HIF1-alpha Regulatory Loop Links Hypoxiaand Mitochondrial Signals in Pheochromocytomas , 2005 .

[120]  David G. Watson,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[121]  Eyal Gottlieb,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[122]  W. Kaelin,et al.  Role of VHL gene mutation in human cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[123]  P. Munson,et al.  Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. , 2004, Endocrine-related cancer.

[124]  J. Brugarolas,et al.  Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. , 2004, Cancer cell.

[125]  E. Jordanova,et al.  Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families , 2004, Oncogene.

[126]  Jinhai Gao,et al.  Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors , 2004, Nature.

[127]  Yusuke Nakamura,et al.  Germline mutations of the RET proto-oncogene in eight Japanese patients with multiple endocrine neoplasia type 2A (MEN2A) , 1995, Human Genetics.

[128]  L. Aaltonen,et al.  Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. , 2004, American journal of human genetics.

[129]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[130]  P. Rustin,et al.  Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. , 2003, Cancer research.

[131]  T. Jacks,et al.  Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. , 2003, Genes & development.

[132]  J. Strauchen Germ-line mutations in nonsyndromic pheochromocytoma. , 2002, The New England journal of medicine.

[133]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[134]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[135]  A. Paetau,et al.  Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer , 2002, Nature Genetics.

[136]  P. O’Farrell Faculty Opinions recommendation of Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. , 2001 .

[137]  G. Semenza,et al.  HIF-1, O2, and the 3 PHDs How Animal Cells Signal Hypoxia to the Nucleus , 2001, Cell.

[138]  E S Husebye,et al.  Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. , 2001, American journal of human genetics.

[139]  P. Ratcliffe,et al.  Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. , 2001, Human molecular genetics.

[140]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[141]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[142]  Ulrich Müller,et al.  Mutations in SDHC cause autosomal dominant paraganglioma, type 3 , 2000, Nature Genetics.

[143]  G. Semenza HIF-1: mediator of physiological and pathophysiological responses to hypoxia. , 2000, Journal of applied physiology.

[144]  A. Tischler,et al.  C‐cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B , 2000, The EMBO journal.

[145]  B. Devlin,et al.  Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. , 2000, Science.

[146]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[147]  R. Hammer,et al.  The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. , 1998, Genes & development.

[148]  J. Louis,et al.  GDNF–Induced Activation of the Ret Protein Tyrosine Kinase Is Mediated by GDNFR-α, a Novel Receptor for GDNF , 1996, Cell.

[149]  B. Ponder,et al.  Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. , 1995, JAMA.

[150]  N. Asai,et al.  Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations , 1995, Molecular and cellular biology.

[151]  al. et,et al.  Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B , 1995, Science.

[152]  A. Saltiel,et al.  c-Myc Does Not Require Max for Transcriptional Activity in PC-12 Cells , 1994, Molecular and Cellular Neuroscience.

[153]  Frank Costantini,et al.  Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret , 1994, Nature.

[154]  B. Ponder,et al.  Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A , 1993, Nature.

[155]  T. Sano,et al.  ras Mutations in Endocrine Tumors: Mutation Detection by Polymerase Chain Reaction‐Single Strand Conformation Polymorphism , 1992, Japanese journal of cancer research : Gann.

[156]  F. Collins,et al.  Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients , 1992, Nature.

[157]  R. Eisenman,et al.  Myc and Max associate in vivo. , 1992, Genes & development.

[158]  M. Wigler,et al.  The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins , 1990, Cell.

[159]  P. O'Connell,et al.  Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus , 1990, Cell.

[160]  A. Tischler,et al.  Acute stimulation of chromaffin cell proliferation in the adult rat adrenal medulla. , 1988, Laboratory investigation; a journal of technical methods and pathology.

[161]  H. Sather,et al.  Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. , 1985, The New England journal of medicine.

[162]  C. Rigby,et al.  Neurofibromatosis, phaeochromocytoma, and somatostatinoma. , 1982, British medical journal.

[163]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .