The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes

We focus upon two properties, the electrostatic potential V(r) and the average local ionization energy . When evaluated on molecular surfaces, VS(r) and can be useful tools for analyzing and predicting reactive behavior. VS(r) is most reliable with respect to noncovalent interactions; when electrophilic attack and some degree of charge transfer are involved, then the combination of VS(r) and can be quite effective. They play complementary roles: VS(r) reveals the regions of the molecule to which an electrophile would initially be attracted, and indicates the ease of charge transfer at these and other sites. Four examples of such complementarity are discussed, involving benzene derivatives, guanine and cytosine, furan and pyrrole, and binary hydrides. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002

[1]  D. Clark,et al.  Model potential energy surfaces for approach of an electrophile to acetylene and fluoroacetylene , 1973 .

[2]  S. Ranganathan,et al.  Radial behavior of the average local ionization energies of atoms , 1991 .

[3]  H. Weinstein,et al.  Electron charge redistribution following electrophilic attack on heterocycles: nitrogen as a charge transducer , 1978 .

[4]  Harel Weinstein,et al.  A misconception concerning the electronic density distribution of an atom , 1975 .

[5]  K. C. Daiker,et al.  Molecular electrostatic potentials. Mechanistic aspects of electrophilic attack on furan , 1973 .

[6]  A. Sapse Molecular orbital calculations for biological systems , 1998 .

[7]  J. Murray,et al.  Applications of calculated local surface ionization energies to chemical reactivity , 1992 .

[8]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[9]  Parr,et al.  Local temperature in an electronic system. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[11]  O. Jardetzky,et al.  Proton Magnetic Resonance Studies of Purine and Pyrimidine Derivatives. IX. The Protonation of Pyrimidines in Acid Solution , 1963 .

[12]  D. Pérahia,et al.  The molecular electrostatic potential of the B-DNA helix. VL The regions of the base pairs in poly (dG.dC) and poly (dA.dT) , 1979 .

[13]  J. Murray,et al.  Relationships between the aqueous acidities of some carbon, oxygen, and nitrogen acids and the calculated surface local ionization energies of their conjugate bases , 1991 .

[14]  J. Bertrán,et al.  The van der Waals interactions as a tool for the interpretation of aromatic substitutions , 1975 .

[15]  Peter Politzer,et al.  Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes , 1990 .

[16]  J. Murray,et al.  Correlations between the solvent hydrogen-bond-donating parameter .alpha. and the calculated molecular surface electrostatic potential , 1991 .

[17]  Peter Politzer,et al.  Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity , 1990 .

[18]  R. Bonaccorsi,et al.  A representation of the polarization term in the interaction energy between a molecule and a point-like charge , 1976 .

[19]  H. Weinstein,et al.  Molecular electrostatic potentials-II: Mechanistic aspects of electrophilic interactions of some five-membered heterocycles , 1975 .

[20]  Peter Quarendon,et al.  Display of quantum mechanical properties on van der Waals surfaces , 1984 .

[21]  T. Kistenmacher,et al.  Secondary interactions and their role in the molecular conformation of transition metal-pyrimidine complexes. Semichelation and interligand hydrogen bonding involving O(2) of cytosine in the complex [(N-salicylidene-N'-methylethylenediamine)(cytosine)copper(II)] nitrate monohydrate , 1975 .

[22]  Jacopo Tomasi,et al.  The molecular electrostatic potentials for the nucleic acid bases: Adenine, thymine, and cytosine , 1972 .

[23]  J. Murray,et al.  Comparison of density functional and Hartree–Fock average local ionization energies on molecular surfaces , 1998 .

[24]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[25]  R. Feynman Forces in Molecules , 1939 .

[26]  J M Blaney,et al.  Electrostatic potential molecular surfaces. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H. Weinstein,et al.  Tautomerism and the receptor action of histamine: a mechanistic model. , 1976, Molecular pharmacology.

[28]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[29]  O. M. Friedman,et al.  The methylation of deoxyribonucleosides by diazomethane. , 1963, Biochimica et biophysica acta.

[30]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[31]  J. Murray,et al.  Average local ionization energies computed on the surfaces of some strained molecules , 1990 .

[32]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[33]  J. Murray,et al.  Molecular surface electrostatic potentials and local ionization energies of Group V–VII hydrides and their anions: Relationships for aqueous and gas-phase acidities , 1993 .

[34]  K. L. Hunt Dispersion dipoles and dispersion forces: Proof of Feynman’s ‘‘conjecture’’ and generalization to interacting molecules of arbitrary symmetry , 1990 .

[35]  P. Politzer,et al.  Characteristic features of the electrostatic potentials of singly negative monoatomic ions , 1989 .

[36]  R. Bonaccorsi,et al.  Molecular SCF calculations for the ground state of some three-membered ring molecules: Cis and trans diaziridine, oxaziridine and the corresponding imminium ions , 1971 .

[37]  R. Bonaccorsi,et al.  N- versus O-proton affinities of the amide group: Ab initio electrostatic molecular potentials , 1972 .

[38]  Jacopo Tomasi,et al.  The electrostatic molecular potential for imidazole, pyrazole, oxazole and isoxazole , 1972 .

[39]  J. Murray,et al.  Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials , 2001 .

[40]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[41]  Michelle Francl,et al.  Polarization corrections to electrostatic potentials , 1985 .

[42]  Alan R. Katritzky,et al.  Handbook of heterocyclic chemistry , 1985 .

[43]  Qishi Du,et al.  Derivation of fused‐sphere molecular surfaces from properties of the electrostatic potential distribution , 1996 .

[44]  Shridhar R. Gadre,et al.  Maximal and minimal characteristics of molecular electrostatic potentials , 1990 .

[45]  J. Murray,et al.  Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF) , 1994 .

[46]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[47]  Gustavo A. Arteca,et al.  Shape group studies of molecular similarity: relative shapes of Van der Waals and electrostatic potential surfaces of nicotinic agonists , 1988 .

[48]  B. Deb,et al.  The Force Concept in Chemistry , 1981 .

[49]  A. Loveless,et al.  Possible Relevance of O–6 Alkylation of Deoxyguanosine to the Mutagenicity and Carcinogenicity of Nitrosamines and Nitrosamides , 1969, Nature.

[50]  S. Ranganathan,et al.  Correlations between the solvent hydrogen bond acceptor parameter β and the calculated molecular electrostatic potential , 1991 .

[51]  J. Murray,et al.  Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .

[52]  Peter Politzer,et al.  Quantitative treatments of solute/solvent interactions , 1994 .

[53]  N. Russo,et al.  Proton Affinity and Protonation Sites of Aniline. Energetic Behavior and Density Functional Reactivity Indices , 2000 .

[54]  H. Hagelin,et al.  Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts , 1995 .

[55]  P. Politzer,et al.  A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies , 1998 .

[56]  Lawley Pd Effects of Some Chemical Mutagens and Carcinogens on Nucleic Acids , 1966 .

[57]  R. Bartlett,et al.  Theoretical treatment of multiple site reactivity in large molecules , 1975 .

[58]  J. Murray,et al.  Computational characterization of nucleotide bases: Molecular surface electrostatic potentials and local ionization energies, and local polarization energies , 2001 .

[59]  R. V. D. Neut Approximate calculations on a protonation step in the reduction of propadienes , 1975 .