Spectral properties of one dimensional quasi-crystals
暂无分享,去创建一个
Jean Bellissard | Elisabetta Scoppola | E. Scoppola | J. Bellissard | B. Iochum | D. Testard | B. Iochum | D. Testard
[1] J. Sethna,et al. Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .
[2] P J Steinhardt,et al. The physics of quasicrystals , 1987 .
[3] Band spectrum for an electron on a Sierpinski gasket in a magnetic field , 1987 .
[4] J. Luck,et al. Phonon spectra in one-dimensional quasicrystals , 1986 .
[5] Chao Tang,et al. Localization Problem in One Dimension: Mapping and Escape , 1983 .
[6] F. Martinelli,et al. Introduction to the mathematical theory of Anderson localization , 1986 .
[7] Banavar,et al. Quasiperiodic lattice: Electronic properties, phonon properties, and diffusion. , 1986, Physical review. B, Condensed matter.
[8] M. K. Ali,et al. Scaling and eigenstates for a class of one-dimensional quasiperiodic lattices , 1988 .
[9] C. Janot,et al. Quasicrystalline materials : proceedings of the I.L.L./CODEST Workshop, Grenoble 21-25 March 1988 , 1988 .
[10] B. Simon. Almost periodic Schrödinger operators: A Review , 1982 .
[11] M. Casdagli. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .
[12] András Sütő,et al. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .
[13] P. Bougerol,et al. Products of Random Matrices with Applications to Schrödinger Operators , 1985 .
[14] JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .
[15] Kohmoto,et al. Resistance of a one-dimensional quasicrystal: Power-law growth. , 1987, Physical review. B, Condensed matter.
[16] F. Martinelli,et al. Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential , 1985 .
[17] J. Cassels,et al. An Introduction to Diophantine Approximation , 1957 .
[18] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[19] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[20] H. Kunz,et al. Cantor spectrum and singular continuity for a hierarchical Hamiltonian , 1989 .
[21] Dimitri Petritis,et al. Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .
[22] On the Energy Transport in Linear Chains , 1974 .
[23] Seunghwan Kim,et al. Renormalization of Quasiperiodic Mappings , 1985 .
[24] Ali,et al. Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. , 1988, Physical review letters.
[25] M. Kohmoto. Metal-Insulator Transition and Scaling for Incommensurate Systems , 1983 .
[26] M. Barnsley,et al. Almost periodic Jacobi matrices associated with Julia sets for polynomials , 1985 .
[27] András Sütő,et al. The spectrum of a quasiperiodic Schrödinger operator , 1987 .
[28] R. Rammal,et al. Spectrum of harmonic excitations on fractals , 1984 .
[29] E. Scoppola,et al. The density of states for almost periodic Schrödinger operators and the frequency module: A counter-example , 1982 .
[30] J. Luck,et al. Cantor spectra and scaling of gap widths in deterministic aperiodic systems. , 1989, Physical review. B, Condensed matter.
[31] B A Huberman,et al. Ultradiffusion: the relaxation of hierarchical systems , 1985 .
[32] D. Bessis,et al. Chaotic States of Almost Periodic Schrödinger Operators , 1982 .
[33] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[34] David A. Rand,et al. One-dimensional schrodinger equation with an almost periodic potential , 1983 .
[35] F. Axel,et al. VIBRATIONAL MODES IN A ONE DIMENSIONAL "QUASI-ALLOY" : THE MORSE CASE , 1986 .