CO2 Capture with Green Ionic Liquid and Deep Eutectic Solvent: A Comparative Study

[1]  H. Qun,et al.  Study on the effect of operating parameters towards CO2 absorption behavior of choline chloride – Monoethanolamine deep eutectic solvent and its aqueous solutions , 2020 .

[2]  E. Izgorodina,et al.  A systematic study of DFT performance for geometry optimisations of ionic liquid clusters. , 2020, Journal of chemical theory and computation.

[3]  Weize Wu,et al.  Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2 , 2020, ACS omega.

[4]  Ismail I. I. Alkhatib,et al.  Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents , 2020 .

[5]  S. Mitragotri,et al.  The Influence of Water on Choline-Based Ionic Liquids. , 2019, ACS biomaterials science & engineering.

[6]  Majid Moosavi,et al.  Structure and Dynamics in Amino Acid Choline-Based Ionic Liquids: A Combined QTAIM, NCI, DFT, and Molecular Dynamics Study. , 2019, The journal of physical chemistry. B.

[7]  S. Mitragotri,et al.  Transdermal insulin delivery using choline‐based ionic liquids (CAGE) , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[8]  Rakesh Kumar,et al.  Thermodynamic and Kinetic Studies of CO2 Capture by Glycol and Amine-Based Deep Eutectic Solvents , 2018, Journal of Chemical & Engineering Data.

[9]  Samir Mitragotri,et al.  Ionic liquids for oral insulin delivery , 2018, Proceedings of the National Academy of Sciences.

[10]  S. Mitragotri,et al.  Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE). , 2018, ACS biomaterials science & engineering.

[11]  E. Maginn,et al.  Role of Molecular Modeling in the Development of CO2-Reactive Ionic Liquids. , 2018, Chemical reviews.

[12]  S. Mitragotri,et al.  Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent , 2017, Advanced healthcare materials.

[13]  Xiangping Zhang,et al.  Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. , 2017, Chemical reviews.

[14]  Xiaoyan Ji,et al.  Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. , 2017, ChemSusChem.

[15]  B. Kirchner,et al.  Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids. , 2016, ChemSusChem.

[16]  S. Mitragotri,et al.  Choline and Geranate Deep Eutectic Solvent as a Broad‐Spectrum Antiseptic Agent for Preventive and Therapeutic Applications , 2016, Advanced healthcare materials.

[17]  S. Aparicio,et al.  The impact of charges in force field parameterization for molecular dynamics simulations of deep eutectic solvents , 2015 .

[18]  M. Khraisheh,et al.  A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches. , 2015, Physical chemistry chemical physics : PCCP.

[19]  Mert Atilhan,et al.  A theoretical study on mitigation of CO2 through advanced deep eutectic solvents , 2015 .

[20]  B. Kirchner,et al.  Computer-Aided Design of Ionic Liquids as CO2 Absorbents. , 2015, Angewandte Chemie.

[21]  R. E. Del Sesto,et al.  Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization , 2014, Proceedings of the National Academy of Sciences.

[22]  D. Deng,et al.  Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents , 2014 .

[23]  Hua Zhao,et al.  Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture , 2014 .

[24]  Meng-Hui Li,et al.  Solubility of carbon dioxide in aqueous mixtures of (reline + monoethanolamine) at T = (313.2 to 353.2) K , 2014 .

[25]  K. M. Gupta,et al.  Systematic Investigation of Nitrile Based Ionic Liquids for CO2 Capture: A Combination of Molecular Simulation and ab Initio Calculation , 2014 .

[26]  F. Mutelet,et al.  Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate , 2013 .

[27]  M. C. Kroon,et al.  Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. , 2013, Angewandte Chemie.

[28]  Robin D. Rogers,et al.  Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior , 2013 .

[29]  B. Kirchner,et al.  Significant Cation Effects in Carbon Dioxide–Ionic Liquid Systems , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  Elizabeth J. Biddinger,et al.  COSMO-RS Studies: Structure–Property Relationships for CO2 Capture by Reversible Ionic Liquids , 2012 .

[31]  L. Dang,et al.  Molecular Mechanism of Gas Adsorption into Ionic Liquids: A Molecular Dynamics Study , 2012 .

[32]  Edward J Maginn,et al.  Molecular dynamics simulations of carbon dioxide and water at an ionic liquid interface. , 2011, The journal of physical chemistry. B.

[33]  Bert L. de Groot,et al.  g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates , 2010 .

[34]  C. Wick,et al.  Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: a molecular dynamics study with polarizable potential models. , 2010, The journal of physical chemistry. B.

[35]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[36]  I. Marrucho,et al.  High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids , 2010 .

[37]  T. Gefflaut,et al.  Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids. , 2010, The journal of physical chemistry. B.

[38]  D. Nesbitt,et al.  State-Resolved Scattering at Room-Temperature Ionic Liquid−Vacuum Interfaces: Anion Dependence and the Role of Dynamic versus Equilibrium Effects , 2010 .

[39]  Thomas Foo,et al.  Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[40]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[41]  C. Peters,et al.  Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2007 .

[42]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[43]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[44]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[45]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[46]  J. Madhavan,et al.  Quantum chemical analysis of electronic structure and bonding aspects of choline based ionic liquids , 2018 .