Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds.

Here we report a graphene oxide amplified electrogenerated chemiluminescence (ECL) of quantum dots (QDs) platform and its efficient selective sensing for antioxidants. Graphene oxide facilitated the CdTe QDs*+ production and triggered O2*- generation. Then, a high yield of CdTe QDs* was formed due to the combination of CdTe QDs*+ and O2*-, leading to an approximately 5-fold ECL amplification. Glutathione is the most abundant cellular thiol-containing peptide, but its selective sensing is an intractable issue in analytical and biochemical communities because its detection is interfered with by some thiol-containing compounds. This platform showed a detection limit of 8.3 microM (S/N = 3) for glutathione and a selective detection linear dependence from 24 to 214 microM in the presence of 120 muM cysteine and glutathione disulfide. This platform was also successfully used for real sample (eye drug containing glutathione) detection without any pretreatment with a wide linear range from 0.04 to 0.29 microg mL(-1).