On Structural Properties to Improve FMEA-Based Abductive Diagnosis

Abductive Model-Based Diagnosis (MBD) provides an intuitive approach to fault identification by reasoning on a description of the system to be diagnosed. Nevertheless, its computational complexity hinders a vast adoption and thus motivates further evaluation of efficient methods. In this paper, we investigate the structural metrics inherent to models and diagnosis problems generated on the basis of Failure Mode Effect Analysis (FMEA). Proceeding on the metrics developed, we investigate their potential as classification features to identify the most suitable diagnosis algorithm for a particular diagnosis problem. Evaluated on artificial and practical samples, our approach shows that the classifier trained on the described metrics is able to indicate the most efficient method in case of a specific diagnosis scenario.

[1]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[2]  Raymond Reiter A theory of diagnosis from first principles , 1986 .

[3]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[4]  Pietro Torasso,et al.  On the Relationship between Abduction and Deduction , 1991, J. Log. Comput..

[5]  Marcantonio Catelani,et al.  The FMEDA approach to improve the safety assessment according to the IEC61508 , 2010, Microelectron. Reliab..

[6]  Philippe Morignot,et al.  Knowledge Systems Laboratory May 1994 Report No . KSL 94-23 Embedded Planning , 1994 .

[7]  Joachim Baumeister,et al.  Diagnostic Reasoning with Multilevel Set-Covering Models , 2002 .

[8]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[9]  Paolo Mancarella,et al.  Abductive Logic Programming , 1992, LPNMR.

[10]  Pierre Marquis,et al.  Consequence Finding Algorithms , 2000 .

[11]  Collectif Advances in Computers , 2015 .

[12]  Yueqiu Jiang,et al.  The parsimonious covering theory applied for communication equipment malfunction , 2013, 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[13]  Gustav Nordh,et al.  What makes propositional abduction tractable , 2008, Artif. Intell..

[14]  Dj Pym Journal of Logic and Computation: Editorial , 2005 .

[15]  Valentina Ivanova,et al.  Repairing missing is-a structure in ontologies is an abductive reasoning problem , 2013, WoDOOM.

[16]  Nysret Musliu,et al.  Algorithm Selection for the Graph Coloring Problem , 2013, LION.

[17]  Sheila A. McIlraith Logic-Based Abductive Inference , 1998 .

[18]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[19]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[20]  Li Lin,et al.  The computation of hitting sets: Review and new algorithms , 2003, Inf. Process. Lett..

[21]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[22]  市坡 禎子 Johan de Kleer : "An Assumption-based TMS", "Extending the ATMS", "Problem solving with the ATMS", AI Journal, 28, pp.127-224(1986). , 1986 .

[23]  Keiji Kanazawa,et al.  A Decision-Theoretic Abductive Basis for Planning* , 1994 .

[24]  J. Reggia,et al.  Abductive Inference Models for Diagnostic Problem-Solving , 1990, Symbolic Computation.

[25]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[26]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[27]  John R. Rice,et al.  The Algorithm Selection Problem—Abstract Models , 1974 .

[28]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[29]  Stefan Rümmele,et al.  Evaluating Tree-Decomposition Based Algorithms for Answer Set Programming , 2012, LION.

[30]  D. J. Woollons,et al.  Failure modes and effects analysis of complex engineering systems using functional models , 1998, Artif. Intell. Eng..

[31]  Peter Struss,et al.  From Modelica Models to Fault Diagnosis in Air Handling Units , 2014 .

[32]  Franz Wotawa,et al.  A variant of Reiter's hitting-set algorithm , 2001, Inf. Process. Lett..

[33]  Danny De Schreye,et al.  SLDNFA: An Abductive Procedure for Abductive Logic Programs , 1998, J. Log. Program..

[34]  Peter Szolovits,et al.  Artificial Intelligence in Medicine , 1982 .

[35]  Ingo Pill,et al.  PyMBD: A Library of MBD Algorithms and a Light-weight Evaluation Platform, by Thomas Quaritsch and Ingo Pill , 2014 .

[36]  Franz Wotawa,et al.  Failure Mode and Effect Analysis for Abductive Diagnosis , 2014, DARe@ECAI.

[37]  Russell Greiner,et al.  A Correction to the Algorithm in Reiter's Theory of Diagnosis , 1989, Artif. Intell..

[38]  Desheng Dash Wu,et al.  Artificial intelligence in engineering risk analytics , 2017, Eng. Appl. Artif. Intell..

[39]  Georg Gottlob,et al.  Hypothesis Classification, Abductive Diagnosis and Therapy , 1990, Expert Systems in Engineering.