Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube

We consider the problem of minimizing a polynomial on the hypercube $[0,1]^n$ and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmudgen [Math. Ann., 289 (1991), pp. 203-206]. The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates on the hypercube.

[1]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[2]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, J. Complex..

[3]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[4]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[5]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[6]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[7]  Jean B. Lasserre,et al.  Convexity in SemiAlgebraic Geometry and Polynomial Optimization , 2008, SIAM J. Optim..

[8]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[9]  Mehdi Ghasemi,et al.  Lower bounds for a polynomial in terms of its coefficients , 2010 .

[10]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[11]  Markus Schweighofer,et al.  On the complexity of Schmu"dgen's Positivstellensatz , 2004, J. Complex..

[12]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[13]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[14]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .

[15]  Pablo A. Parrilo,et al.  A PTAS for the minimization of polynomials of fixed degree over the simplex , 2006, Theor. Comput. Sci..

[16]  Etienne de Klerk,et al.  The complexity of optimizing over a simplex, hypercube or sphere: a short survey , 2008, Central Eur. J. Oper. Res..

[17]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[18]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[19]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[20]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[21]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[22]  Andreas Knoblauch,et al.  Closed-form Expressions for the Moments of the Binomial Probability Distribution , 2008, SIAM J. Appl. Math..

[23]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[24]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[25]  B. Reznick A quantitative version of Hurwitz' theorem on the arithmetic-geometric inequality. , 1987 .

[26]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[27]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .