A Modica-Mortola Approximation for Branched Transport and Applications

[1]  P. Tilli,et al.  Γ-convergence for the irrigation problem , 2012 .

[2]  Édouard Oudet,et al.  Approximation of Partitions of Least Perimeter by Γ-Convergence: Around Kelvin’s Conjecture , 2011, Exp. Math..

[3]  Friedrich Sauvigny Partial Differential Equations 1 , 2011 .

[4]  F. Santambrogio A Modica–Mortola approximation for branched transport , 2009, 0909.2930.

[5]  J. Morel,et al.  Optimal Transportation Networks: Models and Theory , 2008 .

[6]  F. Santambrogio Optimal channel networks, landscape function and branched transport , 2007 .

[7]  Gamma-convergence for the irrigation problem , 2005 .

[8]  Qinglan Xia Interior regularity of optimal transport paths , 2004 .

[9]  Qinglan Xia OPTIMAL PATHS RELATED TO TRANSPORT PROBLEMS , 2003 .

[10]  M. F,et al.  A variational model of irrigation patterns , 2003 .

[11]  Guy Bouchitté,et al.  Asymptotique d'un problème de positionnement optimal , 2002 .

[12]  A. Rinaldo,et al.  Fractal River Basins , 2001 .

[13]  Camillo De Lellis,et al.  Line energies for gradient vector fields in the plane , 1999 .

[14]  B. White Rectifiability of flat chains , 1999, math/9907209.

[15]  Guoliang Xue,et al.  Computing the Minimum Cost Pipe Network Interconnecting One Sink and Many Sources , 1999, SIAM J. Optim..

[16]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[17]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[18]  G. Bouchitté,et al.  Transitions de phases avec un potentiel dégénéré à l'infini, application à l'équilibre de petites gouttes , 1996 .

[19]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[20]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[21]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[22]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[23]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[24]  Y. Giga,et al.  Singularities and rank one properties of Hessian measures , 1989 .

[25]  V. Walsh Models and Theory , 1987 .

[26]  Yoshikazu Giga,et al.  A mathematical problem related to the physical theory of liquid crystal configurations , 1987 .

[27]  H. Fédérer Geometric Measure Theory , 1969 .

[28]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[29]  E. Gilbert Minimum cost communication networks , 1967 .