Transient science with the e-EVN

I briefly review transient research with the EVN, with particular emphasis on the science that was (or is being) made possible with the latest real-time e-VLBI developments.

[1]  H. J. van Langevelde,et al.  A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr , 2010, Nature.

[2]  C. Kouveliotou,et al.  VLBI observations of the shortest orbital period black hole binary, MAXI J1659-152 , 2013, 1303.6901.

[3]  E. Rol,et al.  DETAILED RADIO VIEW ON TWO STELLAR EXPLOSIONS AND THEIR HOST GALAXY: XRF 080109/SN 2008D AND SN 2007uy in NGC 2770 , 2010, 1011.2521.

[4]  E. F. Keane,et al.  The variability time-scales and brightness temperatures of radio flares from stars to supermassive black holes , 2014, 1411.1067.

[5]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[6]  M. Kasliwal,et al.  Transients in the Local Universe , 2009, 0903.0218.

[7]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[8]  S. Komossa,et al.  Tidal disruption of stars by supermassive black holes: Status of observations , 2015, 1505.01093.

[9]  H. J. van Langevelde,et al.  The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales , 2017, 1701.01099.

[10]  Tao An,et al.  Very Long Baseline Interferometry with the SKA , 2014, 1412.5971.

[11]  Z. Paragi,et al.  SS433, microquasars, and other transients , 2012, 1210.1032.

[12]  V. Dhawan,et al.  A weak compact jet in a soft state of Cygnus X‐1 , 2011, 1110.4374.

[13]  T. Maccarone,et al.  The closest black holes , 2013, 1301.1341.

[14]  T. Muxlow,et al.  Wide-field Global VLBI and MERLIN combined monitoring of supernova remnants in M82 , 2010, 1006.1504.

[15]  E. Palazzi,et al.  The 999th Swift gamma-ray burst: Some like it thermal - A multiwavelength study of GRB 151027A , 2016, 1604.08204.

[16]  Cosmology,et al.  Stirring the Embers: High-Sensitivity VLBI Observations of GRB 030329 , 2007, 0704.2085.

[17]  M. F. Bode,et al.  An asymmetric shock wave in the 2006 outburst of the recurrent nova RS Ophiuchi , 2006, Nature.

[18]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[19]  R. M. Campbell,et al.  No apparent superluminal motion in the first-known jetted tidal disruption event Swift J1644+5734 , 2016, 1605.06461.

[20]  J. Zwart,et al.  Resolving the blazar CGRaBS J0809+5341 in the presence of telescope systematics , 2016, 1610.03773.

[21]  E. Ros,et al.  Radio emission of SN1993J. The complete picture: II. Simultaneous fit of expansion and radio light curves , 2010, 1007.1224.

[22]  J. Prieto,et al.  THE TDE ASASSN-14li AND ITS HOST RESOLVED AT PARSEC SCALES WITH THE EVN , 2016, 1609.00010.

[23]  Nrl,et al.  FRB 150418: clues to its nature from European VLBI Network and e-MERLIN observations , 2016, 1609.01419.

[24]  S. V. Pogrebenko,et al.  The SFXC software correlator for very long baseline interferometry: algorithms and implementation , 2015, 1502.00467.

[25]  R. P. Eatough,et al.  An interference removal technique for radio pulsar searches , 2009, 0901.3993.

[26]  Bonn,et al.  Discovery of an unusual new radio source in the star-forming galaxy M82: faint supernova, supermassive black hole or an extragalactic microquasar? , 2010, 1003.0994.

[27]  David R. Thompson,et al.  LIMITS ON FAST RADIO BURSTS FROM FOUR YEARS OF THE V-FASTR EXPERIMENT , 2016, 1605.07606.

[28]  I. Shapiro,et al.  A Decade of SN 1993J: Discovery of Radio Wavelength Effects in the Expansion Rate , 2009, 0903.3833.

[29]  H Germany,et al.  Radio and X-ray observations of jet ejection in Cygnus X-2 , 2013, 1306.0599.

[30]  A distorted radio shell in the young supernova SN 1986J , 2002, astro-ph/0202514.

[31]  T. Joseph W. Lazio,et al.  The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 , 2017, 1701.01100.

[32]  A. Taylor,et al.  VLBI observations of RS Oph – a recurrent nova with non-spherical ejection , 1989 .

[33]  E. Rossi,et al.  RADIO–X-RAY SYNERGY TO DISCOVER AND STUDY JETTED TIDAL DISRUPTION EVENTS , 2015, 1501.05111.

[34]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[35]  Z. Paragi,et al.  Pipeline Processing of VLBI Data , 2002 .

[36]  A. Alberdi,et al.  An extremely prolific supernova factory in the buried nucleus of the starburst galaxy IC 694 , 2009, 0909.3959.

[37]  Koji Mukai,et al.  Binary orbits as the driver of γ-ray emission and mass ejection in classical novae , 2014, Nature.

[38]  O. I. Wong,et al.  WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst , 2023, The Astrophysical Journal.

[39]  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[40]  NE2001. II. Using Radio Propagation Data to Construct a Model for the Galactic Distribution of Free Electrons , 2003, astro-ph/0301598.

[41]  A. Deller,et al.  RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE , 2014, 1412.5155.

[42]  R. M. Campbell,et al.  First e-VLBI Observations of GRS 1915+105 , 2007 .

[43]  J. Conway,et al.  The Radio Spectra of the Compact Sources in Arp 220: A Mixed Population of Supernovae and Supernova Remnants , 2006, astro-ph/0612248.

[44]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[45]  M. Templeton,et al.  An Accurate Geometric Distance to the Compact Binary SS Cygni Vindicates Accretion Disc Theory , 2013, Science.

[46]  Manchester,et al.  First e-VLBI observations of Cygnus X-3 , 2006, astro-ph/0611054.