Distance-based formation control using Euclidean distance dynamics matrix: General cases

We propose a formation control law based on inter-agent distances for a general group of single-integrator modeled agents on the plane. By attempting to directly control the Euclidean distance matrix of the group, we derive the proposed control law from the time-derivative of the matrix. Accordingly, if the initial and desired formations of the group are generically rigid, then the desired formation of the group is locally asymptotically stable. The stability analysis, in which Lyapunov direct method is applied to the distance dynamics of the group, is straightforward. Simulation results demonstrates comparable effectiveness of the control law to an existing law.

[1]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[2]  Hyo-Sung Ahn,et al.  Distance-based formation control using euclidean distance dynamics matrix: Three-agent case , 2011, Proceedings of the 2011 American Control Conference.

[3]  Brian D. O. Anderson,et al.  Controlling a triangular formation of mobile autonomous agents , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  Ella M. Atkins,et al.  Distributed multi‐vehicle coordinated control via local information exchange , 2007 .

[5]  Brian D. O. Anderson,et al.  Control of acyclic formations of mobile autonomous agents , 2008, 2008 47th IEEE Conference on Decision and Control.

[6]  Timothy F. Havel,et al.  The theory and practice of distance geometry , 1985 .

[7]  Florian Dörfler,et al.  Geometric Analysis of the Formation Problem for Autonomous Robots , 2010, IEEE Transactions on Automatic Control.

[8]  B. Roth,et al.  The rigidity of graphs , 1978 .

[9]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[10]  Florian Dörfler,et al.  Formation control of autonomous robots based on cooperative behavior , 2009, 2009 European Control Conference (ECC).

[11]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[12]  Pierre-Antoine Absil,et al.  On the stable equilibrium points of gradient systems , 2006, Syst. Control. Lett..

[13]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[14]  Mireille E. Broucke,et al.  Stabilization of infinitesimally rigid formations of multi-robot networks , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  Hyo-Sung Ahn,et al.  Formation control of mobile agents based on inter-agent distance dynamics , 2011, Autom..

[16]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[17]  Jay A. Farrell,et al.  Cooperative Control of Multiple Nonholonomic Mobile Agents , 2008, IEEE Transactions on Automatic Control.

[18]  Mireille E. Broucke,et al.  Stabilisation of infinitesimally rigid formations of multi-robot networks , 2009, Int. J. Control.

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.