Sparse reconstruction of liver cirrhosis from monocular mini-laparoscopic sequences

Mini-laparoscopy is a technique which is used by clinicians to inspect the liver surface with ultra-thin laparoscopes. However, so far no quantitative measures based on mini-laparoscopic sequences are possible. This paper presents a Structure from Motion (SfM) based methodology to do 3D reconstruction of liver cirrhosis from mini-laparoscopic videos. The approach combines state-of-the-art tracking, pose estimation, outlier rejection and global optimization to obtain a sparse reconstruction of the cirrhotic liver surface. Specular reflection segmentation is included into the reconstruction framework to increase the robustness of the reconstruction. The presented approach is evaluated on 15 endoscopic sequences using three cirrhotic liver phantoms. The median reconstruction accuracy ranges from 0.3 mm to 1 mm.

[1]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[2]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[5]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[6]  Robert M. Haralick,et al.  Review and analysis of solutions of the three point perspective pose estimation problem , 1994, International Journal of Computer Vision.

[7]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[8]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Thorsten Thormählen,et al.  Automatische 3D-Rekonstruktion aus endoskopischen Bildfolgen , 2002, Bildverarbeitung für die Medizin.

[10]  Darius Burschka,et al.  Scale-Invariant Registration of Monocular Endoscopic Images to CT-Scans for Sinus Surgery , 2004, MICCAI.

[11]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[12]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[13]  Lena Maier-Hein,et al.  3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods , 2011, Medical Imaging.

[14]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[15]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[16]  Daniel Mirota,et al.  Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[18]  Rolf-Rainer Grigat,et al.  Closed Contour Specular Reflection Segmentation in Laparoscopic Images , 2013, Int. J. Biomed. Imaging.

[19]  Lena Maier-Hein,et al.  Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery , 2013, Medical Image Anal..

[20]  Maarten Vergauwen,et al.  VIDEO-TO-3 D , 2002 .

[21]  Guang-Zhong Yang,et al.  Three-Dimensional Tissue Deformation Recovery and Tracking , 2010, IEEE Signal Processing Magazine.

[22]  P. Schirmacher,et al.  Minilaparoscopy in the diagnosis of cirrhosis: superiority in patients with Child-Pugh A and macronodular disease. , 2003, Endoscopy.

[23]  Adrien Bartoli,et al.  Towards Live Monocular 3D Laparoscopy Using Shading and Specularity Information , 2012, IPCAI.

[24]  Bill Triggs,et al.  Factorization methods for projective structure and motion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.