Novel applications of discrete mereotopology to mathematical morphology

Abstract This paper shows how the Discrete Mereotopology notions of adjacency and neighbourhood between regions can be exploited through Mathematical Morphology to accept or reject changes resulting from traditional morphological operations such as closing and opening. This leads to a set of six morphological operations (here referred to generically as minimal opening and minimal closing) where minimal changes fulfil specific spatial constraints. We also present an algorithm to compute the RCC5D and RCC8D relation sets across multiple regions resulting in a performance improvement of over three orders of magnitude over our previously published algorithm for Discrete Mereotopology.

[1]  Jean Paul Frédéric Serra Connections for sets and functions , 2000, Fundam. Informaticae.

[2]  Reyer Zwiggelaar,et al.  Modelling mammographic microcalcification clusters using persistent mereotopology , 2014, Pattern Recognit. Lett..

[3]  Isabelle Bloch,et al.  Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations , 2009, Fuzzy Sets Syst..

[4]  Antony Galton,et al.  Mereotopological Correction of Segmentation Errors in Histological Imaging , 2017, J. Imaging.

[5]  Isabelle Bloch,et al.  Fuzzy Relative Position Between Objects in Image Processing: A Morphological Approach , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[7]  Alan E Gelfand,et al.  Hierarchical Modeling for Spatial Data Problems. , 2012, Spatial statistics.

[8]  Isabelle Bloch,et al.  Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology , 2006, Int. J. Approx. Reason..

[9]  Ramin Zabih,et al.  Dynamic Programming and Graph Algorithms in Computer Vision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Gilles Bertrand,et al.  Topology preserving alternating sequential filter for smoothing two-dimensional and three-dimensional objects , 2004, J. Electronic Imaging.

[11]  Yann Cointepas,et al.  Modélisation homotopique et segmentation 3D du cortex cérébral à partir d'IRM pour la résolution des problèmes directs et inverses en EEG et en MEG , 1999 .

[12]  Isabelle Bloch,et al.  Fuzzy Adjacency between Image Objects , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[14]  Isabelle Bloch,et al.  Modal Logics Based on Mathematical Morphology for Qualitative Spatial Reasoning , 2002, J. Appl. Non Class. Logics.

[15]  Isabelle Bloch,et al.  Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results , 2011, DGCI.

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  Antony Galton,et al.  Ontological Levels in Histological Imaging , 2016, Formal Ontology in Information Systems.

[18]  Fabio Augusto Salve Dias,et al.  A study of some morphological operators in simplicial complex spaces. (Une étude de certains opérateurs morphologiques dans les complexes simpliciaux) , 2012 .

[19]  Michael H. F. Wilkinson,et al.  Mask-Based Second-Generation Connectivity and Attribute Filters , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Ramzi Mahmoudi,et al.  Enhanced computation method of topological smoothing on shared memory parallel machines , 2011, EURASIP J. Image Video Process..

[21]  Antony Galton,et al.  The Mereotopology of Discrete Space , 1999, COSIT.

[22]  Péter Balázs,et al.  Complexity results for reconstructing binary images with disjoint components from horizontal and vertical projections , 2013, Discret. Appl. Math..

[23]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[24]  Isabelle Bloch,et al.  Mathematical morphology on bipolar fuzzy sets: general algebraic framework , 2012, Int. J. Approx. Reason..

[25]  Antony Galton,et al.  Discrete Mereotopology for Spatial Reasoning in Automated Histological Image Analysis , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Isabelle Bloch Morphological Links Between Formal Concepts and Hypergraphs , 2017, ISMM.

[27]  Pierre Soille,et al.  Morphological segmentation of binary patterns , 2009, Pattern Recognit. Lett..

[28]  M.A. Oliveira,et al.  A multiscale directional operator and morphological tools for reconnecting broken ridges in fingerprint images , 2008, Pattern Recognit..

[29]  Azriel Rosenfeld,et al.  Degree of adjacency or surroundedness , 1984, Pattern Recognit..

[30]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .