Flexible Piezoelectric Energy Harvesting Circuit With Printable Supercapacitor and Diodes

We report a flexible energy harvesting circuit fabricated by roll-to-roll compatible, solution-processable methods. The circuit incorporates a supercapacitor fabricated from a viscous carbon nanotube dispersion, printed Schottky diodes, and a piezoelectric element. Used low-temperature materials enabled component integration on poly(ethylene terephthalate) substrate. The supercapacitor was built with a paper separator and an aqueous NaCl electrolyte. Together with carbon-based electrodes, these materials translated into a disposable and environmentally safe electronic device. The energy harvested from mechanical movement was used to drive a commercial electrochromic display.

[1]  Alex S. Weddell,et al.  Supercapacitor leakage in energy-harvesting sensor nodes: Fact or fiction? , 2012, 2012 Ninth International Conference on Networked Sensing (INSS).

[2]  Anantha Chandrakasan,et al.  An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor , 2010, IEEE Journal of Solid-State Circuits.

[3]  James F. Tressler,et al.  Piezoelectric Transducer Designs for Sonar Applications , 2008 .

[4]  Sampo Tuukkanen,et al.  Low-cost, solution processable carbon nanotube supercapacitors and their characterization , 2014 .

[5]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[6]  A. Safari,et al.  Piezoelectric and Acoustic Materials for Transducer Applications , 2008 .

[7]  Devendra K. Sahu,et al.  The Effect of Frequency and Temperature on Dielectric Properties of Pure Poly Vinylidene Fluoride (PVDF) Thin Films , 2010 .

[8]  Hiroshi Toshiyoshi,et al.  Insole Pedometer With Piezoelectric Energy Harvester and 2 V Organic Circuits , 2013, IEEE Journal of Solid-State Circuits.

[9]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[10]  M. Umeda,et al.  Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator , 1996 .

[11]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[12]  Satu Kärki,et al.  Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements , 2009 .

[13]  D. Lupo,et al.  Fabrication and characterization of solution-processed carbon nanotube supercapacitors , 2014 .

[14]  Anantha Chandrakasan,et al.  An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  Lihua Tang,et al.  Future of Smart Materials , 2012 .

[16]  L. Roselli,et al.  No Battery Required: Perpetual RFID-Enabled Wireless Sensors for Cognitive Intelligence Applications , 2013, IEEE Microwave Magazine.

[17]  D. Lupo,et al.  Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications , 2013 .

[18]  D. Lupo,et al.  Effect of dielectric barrier on rectification, injection and transport properties of printed organic diodes. , 2011 .

[19]  H. Schmidt,et al.  Piezoelectric polymer electrets , 1996 .

[20]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[21]  D. Lupo,et al.  Printed Half-Wave and Full-Wave Rectifier Circuits Based on Organic Diodes , 2013, IEEE Transactions on Electron Devices.

[22]  Kari Halonen,et al.  Performance of printable supercapacitors in an RF energy harvesting circuit , 2014 .

[23]  Mari Zakrzewski,et al.  Solution-processible electrode materials for a heat-sensitive piezoelectric thin-film sensor , 2012 .

[24]  R. Lucklum,et al.  SPICE model for lossy piezoceramic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.