Stridulation of acridid grasshoppers after hemisection of thoracic ganglia: evidence for hemiganglionic oscillators

SummaryIn the grasshopperChorthippus biguttulus the stridulatory movements of males with surgically manipulated ventral nerve cords were investigated.1.The stridulation pattern of animals with a hemisected mesothoracic ganglion was indistinguishable from that of intact animals.2.After hemisection of the metathoracic ganglion several animals were still able to stridulate in the species-specific pattern (Figs. 3, 5). Different structural elements of the song, however, were affected to different degrees by this operation. Although the stereotyped up-and-down movements were normal, the rhythm of pauses, which in intact animals are inserted after every third to fourth up- and-down cycle, was disturbed. As a result, the variation of syllable lengths was much higher (Fig. 4).3.A prominent feature after hemisection of the metathoracic ganglion was an almost complete loss of coordination between left and right hind legs (Figs. 5–7). Only in the coarse structure of the song (e.g. the beginning and termination of song sequences) was a correlation of the leg movements still discernible. This was especially obvious in songs of the rivalry type and in precopulatory kicking movements (Fig. 8).4.If in addition to hemisection of the metathoracic ganglion one of the neck connectives was transected the animals stridulated only with the hind leg ipsilateral to the intact connective (Fig. 11).5.Even after hemisection of both the meso- and metathoracic ganglia, animals were able to produce the species-specific stridulation pattern (Fig. 9).6.In animals with hemisected metathoracic ganglia and both connectives between pro- and mesothoracic ganglia transected, components of the species-specific pattern could be induced by current injection into the mesothoracic ganglion (Fig. 10).7.These results suggest that the stridulation rhythm-producing neuronal network is composed of hemisegmental subunits. A hemiganglionic structure of rhythm generators might reflect the ancestral organization of locomotion-controlling networks.

[1]  B. Hedwig On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. , 1986, Journal of Comparative Physiology A.

[2]  N. Elsner A Neuroethological Approach to the Phylogeny of Leg Stridulation in Gomphocerine Grasshoppers , 1983 .

[3]  G. Stent,et al.  Neuronal control of swimming in the medicinal leech , 1974, Journal of comparative physiology.

[4]  N. Elsner Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae) , 2004, Journal of comparative physiology.

[5]  W. Otto Friesen,et al.  Neuronal control of leech swimming movements: interactions between cell 60 and previously described oscillator neurons , 1985, Journal of Comparative Physiology A.

[6]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[7]  D. Bentley Control of cricket song patterns by descending interneurons , 2004, Journal of comparative physiology.

[8]  K. Pearson,et al.  Neural circuits in the flight system of the locust. , 1985, Journal of neurophysiology.

[9]  O. Helversen,et al.  Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae) , 2005, Journal of comparative physiology.

[10]  Heiner Römer,et al.  Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust , 1984, Journal of Comparative Physiology A.

[11]  K. Pearson,et al.  Intracellular recordings from interneurones and motoneurones during bilateral kicks in the locust: implications for mechanisms controlling the jump , 1986 .

[12]  P. Stein Motor systems, with specific reference to the control of locomotion. , 1978, Annual review of neuroscience.

[13]  W. O. Friesen,et al.  Neuronal control of leech swimming movements , 1989, Journal of Comparative Physiology A.

[14]  N. Elsner,et al.  Morphology of local “Stridulation” interneurons in the metathoracic ganglion of the acridid grasshopper Omocestus viridulus L , 1987, The Journal of comparative neurology.

[15]  B. Ronacher,et al.  Locust flight behavior after hemisection of individual thoracic ganglia: evidence for hemiganglionic premotor centers , 1988, Journal of Comparative Physiology A.

[16]  Localization of neuronal pathways involved in two behavioral reactions in a grasshopper , 1986, Naturwissenschaften.

[17]  S. Gramoll Activity of metathoracic interneurons during stridulation in the acridid grasshopperOmocestus viridulus L. , 1988, Journal of Comparative Physiology A.

[18]  J. C. Weeks Neuronal basis of leech swimming: separation of swim initiation, pattern generation, and intersegmental coordination by selective lesions. , 1981, Journal of neurophysiology.

[19]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[20]  Dagmar,et al.  Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae) , 1975, Journal of comparative physiology.

[21]  A. V. Popov,et al.  Neuroethology of Acoustic Communication , 1978 .

[22]  Janis C. Weeks,et al.  Synaptic basis of swim initiation in the leech , 2004, Journal of comparative physiology.

[23]  Paul S. G. Stein,et al.  A Comparative Approach to the Neural Control of Locomotion , 1977 .

[24]  K. Pearson,et al.  Interneurons in the flight system of the locust: Distribution, connections, and resetting properties , 1983, The Journal of comparative neurology.

[25]  W. Kutsch,et al.  Evidence for spontaneous song production independent of head ganglia inGryllus campestris L. , 1972, Journal of Comparative Physiology.

[26]  Bernhard Ronacher,et al.  Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments , 1986, Journal of Comparative Physiology A.

[27]  Patterned synaptic drive to locust flight motoneurons after hemisection of thoracic ganglia , 1988, Journal of Comparative Physiology A.

[28]  K G Pearson,et al.  Flight-initiating interneurons in the locust. , 1985, Journal of neurophysiology.

[29]  Franz Huber,et al.  Die Organisation des Werbegesanges der Heuschrecke Gomphocerippus rufus L. in Abhängigkeit von zentralen und peripheren Bedingungen , 1969, Zeitschrift für vergleichende Physiologie.

[30]  O. V. Helversen,et al.  The stridulatory movements of acridid grasshoppers recorded with an opto-electronic device , 2004, Journal of comparative physiology.

[31]  W. Kutsch,et al.  A reconsideration of the central pattern generator concept for locust flight , 2004, Journal of Comparative Physiology A.

[32]  N. Elsner Neuroethology of sound production in gomphocerine grasshoppers (orthoptera: acrididae) , 1975, Journal of comparative physiology.

[33]  Dagmar von Helversen Gesang des Männchens und Lautschema des Weibchens bei der FeldheuschreckeChorthippus biguttulus (Orthoptera, Acrididae) , 1972, Journal of comparative physiology.

[34]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.

[35]  B. Hedwig On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. , 2004, Journal of Comparative Physiology A.

[36]  Franz Huber,et al.  Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.

[37]  S Grillner,et al.  Central pattern generators for locomotion, with special reference to vertebrates. , 1985, Annual review of neuroscience.