Bettering operation of Robots by learning

This article proposes a betterment process for the operation of a mechanical robot in a sense that it betters the next operation of a robot by using the previous operation's data. The process has an iterative learning structure such that the (k + 1)th input to joint actuators consists of the kth input plus an error increment composed of the derivative difference between the kth motion trajectory and the given desired motion trajectory. The convergence of the process to the desired motion trajectory is assured under some reasonable conditions. Numerical results by computer simulation are presented to show the effectiveness of the proposed learning scheme.