Effect of Gap States on the Orientation-Dependent Energy Level Alignment at the DIP/F16CuPc Donor–Acceptor Heterojunction Interfaces

The interface properties of organic–organic heterojunctions (OOHs) between diindenoperylene (DIP) and copper hexadecafluorophthalocyanine (F16CuPc), including interface morphology, molecular orientation, and energy level alignment, have been investigated systematically by atomic force microscopy, in situ ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and synchrotron-based near-edge X-ray adsorption fine structure (NEXAFS) measurements. As revealed by NEXAFS measurements, DIP molecules adopt the standing orientation on the standing F16CuPc on the SiO2 substrate, while they have the lying-down configuration on the flat-lying F16CuPc on the highly oriented pyrolytic graphite substrate. From the UPS and XPS studies, there is a large interfacial charge transfer and a band-bending-like behavior in the standing DIP/F16CuPc OOHs, while the vacuum level is almost aligned at the lying-down DIP/F16CuPc OOH interface. We propose that the defects-induced gap states have a crucial...

[1]  Wei Chen,et al.  Molecular orientation dependent interfacial dipole at the F16CuPc∕CuPc organic heterojunction interface , 2008 .

[2]  Yongli Gao,et al.  Surface analytical studies of interfaces in organic semiconductor devices , 2010 .

[3]  S. Sellner,et al.  Thickness-dependent structural transitions in fluorinated copper-phthalocyanine (F16CuPc) films. , 2006, Journal of the American Chemical Society.

[4]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[5]  N. Ueno,et al.  Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy , 2009 .

[6]  Jeremy L. Ruggles,et al.  Investigating Morphology and Stability of Fac‐tris (2‐phenylpyridyl)iridium(III) Films for OLEDs , 2011 .

[7]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[8]  Andreas Hirsch,et al.  The Potential of Molecular Self‐Assembled Monolayers in Organic Electronic Devices , 2011, Advanced materials.

[9]  Yugeng Wen,et al.  Recent Progress in n‐Channel Organic Thin‐Film Transistors , 2010, Advanced materials.

[10]  W. R. Salaneck,et al.  Fermi level equilibrium at donor-acceptor interfaces in multi-layered thin film stack of TTF and TCNQ , 2010 .

[11]  Evan P. Donoghue,et al.  Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays , 2011, Science.

[12]  Wei Chen,et al.  Low-Temperature Scanning Tunneling Microscopy and Near-Edge X-ray Absorption Fine Structure Investigations of Molecular Orientation of Copper(II) Phthalocyanine Thin Films at Organic Heterojunction Interfaces , 2008 .

[13]  Wei Chen,et al.  Mechanism of the Fermi level pinning at organic donor–acceptor heterojunction interfaces , 2011 .

[14]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[15]  Zhuozhi Wang,et al.  Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility , 2011, Science.

[16]  Bertram Batlogg,et al.  Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals , 2010, 1002.1611.

[17]  N. Armstrong,et al.  Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance , 2008 .

[18]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[19]  D. Yan,et al.  Heterojunction Ambipolar Organic Transistors Fabricated by a Two‐Step Vacuum‐Deposition Process , 2006 .

[20]  Wei Chen,et al.  Organic–Organic Heterojunction Interfaces: Effect of Molecular Orientation , 2011 .

[21]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[22]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  S. Sellner,et al.  In situ study of the growth of nanodots in organic heteroepitaxy. , 2006, Physical Review Letters.

[24]  Anja Haase,et al.  Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds , 2009 .

[25]  Jens Pflaum,et al.  Exciton diffusion length in the organic semiconductor diindenoperylene , 2008 .

[26]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[27]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[28]  A. C. Dürr,et al.  High structural order in thin films of the organic semiconductor diindenoperylene , 2002 .

[29]  Fernando Flores,et al.  Induced Density of States model for weakly-interacting organic semiconductor interfaces , 2007 .

[30]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[31]  Norbert Koch,et al.  Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. , 2008, Journal of the American Chemical Society.

[32]  J. Pflaum,et al.  Correlation between ambipolar transport and structural phase transition in diindenoperylene single crystals , 2006 .

[33]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[34]  Neal R Armstrong,et al.  Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices. , 2009, Macromolecular rapid communications.

[35]  D. Zahn,et al.  The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission , 2006 .

[36]  Jun Wang,et al.  Organic heterojunction and its application for double channel field-effect transistors , 2005 .

[37]  Hongwei Zheng,et al.  New soft X-ray facility SINS for surface and nanoscale science at SSLS , 2005 .

[38]  Fosong Wang,et al.  Non‐Peripheral Tetrahexyl‐Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π–π Stacking for Solution‐Processed Organic Field‐Effect Transistors , 2011, Advanced materials.

[39]  S. Forrest,et al.  Controlled growth of a molecular bulk heterojunction photovoltaic cell , 2004 .

[40]  J. Pflaum,et al.  Ultrathin Films of Diindenoperylene on Graphite and SiO2 , 2009 .

[41]  S. Sellner,et al.  Towards controlled bottom-up architectures in organic heterostructures , 2007 .

[42]  J. Pflaum,et al.  Charge Separation at Molecular Donor–Acceptor Interfaces: Correlation Between Morphology and Solar Cell Performance , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Antje Vollmer,et al.  Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. , 2008, Nature materials.

[44]  Wei Chen,et al.  Molecular Orientation-Dependent Ionization Potential of Organic Thin Films , 2008 .

[45]  H. Dosch,et al.  Evidence for a layer-dependent Ehrlich-Schwöbel barrier in organic thin film growth. , 2009, Physical review letters.

[46]  Wei Chen,et al.  Molecular-scale investigation of C60/p-sexiphenyl organic heterojunction interface. , 2011, The Journal of chemical physics.

[47]  K. Sakamoto,et al.  Band gap states of copper phthalocyanine thin films induced by nitrogen exposure , 2010 .

[48]  S. Sellner,et al.  Structural rearrangements during the initial growth stages of organic thin films of F16CuPc on SiO2. , 2006, The journal of physical chemistry. B.

[49]  William R. Salaneck,et al.  Formation of the Interfacial Dipole at Organic‐Organic Interfaces: C60/Polymer Interfaces , 2007 .