ADMESH: An advanced, automatic unstructured mesh generator for shallow water models

In this paper, we present the development and application of a two-dimensional, automatic unstructured mesh generator for shallow water models called Admesh. Starting with only target minimum and maximum element sizes and points defining the boundary and bathymetry/ topography of the domain, the goal of the mesh generator is to automatically produce a high-quality mesh from this minimal set of input. From the geometry provided, properties such as local features, curvature of the boundary, bathymetric/topographic gradients, and approximate flow characteristics can be extracted, which are then used to determine local element sizes. The result is a high-quality mesh, with the correct amount of refinement where it is needed to resolve all the geometry and flow characteristics of the domain. Techniques incorporated include the use of the so-called signed distance function, which is used to determine critical geometric properties, the approximation of piecewise linear coastline data by smooth cubic splines, a so-called mesh function used to determine element sizes and control the size ratio of neighboring elements, and a spring-based force equilibrium approach used to improve the element quality of an initial mesh obtained from a simple Delaunay triangulation. Several meshes of shallow water domains created by the new mesh generator are presented.

[1]  J. Loder Topographic Rectification of Tidal Currents on the Sides of Georges Bank , 1980 .

[2]  Christopher C. Pain,et al.  A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno , 2008, Comput. Geosci..

[3]  C.R.E. de Oliveira,et al.  Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity , 2006 .

[4]  A. Edelman,et al.  Mesh generation for implicit geometries , 2005 .

[5]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[6]  John M. Huthnance,et al.  Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge , 1995 .

[7]  Frank Uhlig,et al.  Numerical Algorithms with C , 1996 .

[8]  Keston W. Smith,et al.  BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling , 2006, Comput. Geosci..

[9]  P. Gnoffo A vectorized, finite-volume, adaptive-grid algorithm for Navier-Stokes calculations , 1982 .

[10]  Colton J. Conroy ADmesh: An ADvanced Mesh Generator for Hydrodynamic Models , 2010 .

[11]  R. Luettich,et al.  Modelling tides in the western North Atlantic using unstructured graded grids , 1994 .

[12]  Daniel R. Lynch,et al.  Resolution issues in numerical models of oceanic and coastal circulation , 2007 .

[13]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[14]  A. L. Maggi Discontinuous Galerkin Finite Element Methods for Shallow Water Flow: Developing a Computational Infrastructure for Mixed Element Meshes , 2011 .

[15]  Joannes J. Westerink,et al.  Two-dimensional, unstructured mesh generation for tidal models , 2001 .

[16]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[17]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[18]  B. Palmerio An attraction-repulsion mesh adaption model for flow solution on unstructured grids , 1994 .

[19]  Jean-François Remacle,et al.  Multiscale mesh generation on the sphere , 2008 .

[20]  Clint Dawson,et al.  Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge , 2011 .

[21]  A. M. Davies,et al.  A three‐dimensional model of internal tides on the Malin‐Hebrides shelf and shelf edge , 1998 .

[22]  Eric Deleersnijder,et al.  Unstructured, anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean , 2007 .

[23]  Cecil Armstrong,et al.  Automatic Generation of Well Structured Meshed Using Medial Axis and Surface Subdivision , 1991, DAC 1991.

[24]  Siavash N. Meshkat,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..

[25]  J. Westerink,et al.  One‐dimensional finite element grids based on a localized truncation error analysis , 2000 .

[26]  M. Greenberg Advanced Engineering Mathematics , 1988 .

[27]  Jin Zhu,et al.  Background Overlay Grid Size Functions , 2002, IMR.

[28]  S. Hagen,et al.  Meshing Requirements for Tidal Modeling in the Western North Atlantic , 2004 .

[29]  Meshing Requirements for Large Scale Coastal Ocean Tidal Models , 1994 .

[30]  Per-Olof Persson,et al.  Mesh size functions for implicit geometries and PDE-based gradient limiting , 2006, Engineering with Computers.

[31]  D. A. Field Qualitative measures for initial meshes , 2000 .

[32]  Joannes J. Westerink,et al.  Continental Shelf Scale Convergence Studies with a Barotropic Tidal Model , 2013 .

[33]  Scott C. Hagen,et al.  Automatic, unstructured mesh generation for tidal calculations in a large domain , 2006 .

[34]  Marie-Paule Cani,et al.  Controlling Anisotropy in Mass-Spring Systems , 2000, Computer Animation and Simulation.

[35]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[36]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[37]  Jon G. Rokne,et al.  A straightforward algorithm for computing the medial axis of a simple polygon , 1991, Int. J. Comput. Math..

[38]  P. Gnoffo A finite-volume, adaptive grid algorithm applied to planetary entry flowfields , 1983 .

[39]  Scott C. Hagen,et al.  An Unstructured Mesh Generation Algorithm for Shallow Water Modeling , 2002 .

[40]  Frank Uhlig,et al.  Numerical Algorithms with Fortran , 1996 .