Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

We have analyzed the temperature, velocity and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ~ 45,000 with the Immersion GRating INfrared Spectrograph (IGRINS), we detected 68 H2 emission lines within the 1" x 15" slit. The diagnostic ratios of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratios (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arises mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of v = 1, is that the predicted formation temperature for newly-formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1" x 1" areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ~10^5 cm^-3 with a size smaller than ~5 x 10^-3 pc embedded in lower density regions of 10^3-10^4 cm^-3.

[1]  H. Suto,et al.  H2 Line Ratios to Discriminate Dense Photodissociation Regions from Shocks: Application to NGC 2023 and NGC 7023 , 2000 .

[2]  J. Graham,et al.  Infrared Imaging and Spectroscopy of the Molecular Shock in IC 443 , 1995 .

[3]  G. Rieke,et al.  High-Resolution Near-Infrared Spectroscopy of Hubble 12 , 1996 .

[4]  M. Wolfire,et al.  PDR MODEL MAPPING OF OBSCURED H2 EMISSION AND THE LINE-OF-SIGHT STRUCTURE OF M17-SW , 2013, 1309.3181.

[5]  M. Guerrero,et al.  The excitation mechanism of H2 in bipolar planetary nebulae , 2015, 1508.01740.

[6]  T. Onaka,et al.  Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio. , 2015, Astronomy and astrophysics.

[7]  A. Chrysostomou,et al.  The structure of photodissociation regions: M17 northern bar , 1992 .

[8]  M. Mccartney,et al.  Fluorescent H2 in the reflection nebula NGC 2023 - I. Recent observations , 1999 .

[9]  R. Lupu,et al.  Spitzer Mapping of PAHs and H2 in Photodissociation Regions , 2010, 1010.0007.

[10]  Physical structure of the photodissociation regions in NGC 7023 Observations of gas and dust emission with Herschel , 2014, 1410.2081.

[11]  C. M. Walmsley,et al.  Some empirical estimates of the H 2 formation rate in photon-dominated regions , 2004 .

[12]  D. Hollenbach,et al.  PDR MODEL MAPPING OF PHYSICAL CONDITIONS VIA SPITZER/IRS SPECTROSCOPY OF H2: THEORETICAL SUCCESS TOWARD NGC 2023-SOUTH , 2011, 1110.4614.

[13]  J. Mathis Interstellar dust and extinction , 1987 .

[14]  Formation pumping of molecular hydrogen in the messier 17 photodissociation region , 2001, astro-ph/0112174.

[15]  M. Felli,et al.  Solar system-sized condensations in the Orion Nebula , 1987 .

[16]  K. Rice,et al.  Protostars and Planets V , 2005 .

[17]  C II 158 micron and O I 63 micron observations of NGC 7023 - A model for its photodissociation region , 1988 .

[18]  T. Geballe,et al.  Shocked molecular hydrogen in the supernova remnant IC 443 , 1988 .

[19]  G. A. Wade,et al.  A high-resolution spectropolarimetric survey of Herbig Ae/Be stars – I. Observations and measurements , 2012, 1211.2907.

[20]  A. Sternberg,et al.  The Ratio of Ortho- to Para-H2 in Photodissociation Regions , 1998, astro-ph/9812049.

[21]  M. Burton Excitation of molecular clouds and the emission from molecular hydrogen , 1992 .

[22]  H. Okuda,et al.  Fluorescent Molecular Hydrogen Emission from the Reflection Nebula NGC 2023 , 1987 .

[23]  E. V. van Dishoeck Astrochemistry: From Molecular Clouds to Planetary Systems: IAU Symposium 197 , 2000 .

[24]  Daniel T. Jaffe,et al.  Exposure time calculator for Immersion Grating Infrared Spectrograph: IGRINS , 2015, 1501.03249.

[25]  M. Burton,et al.  Fluorescent molecular hydrogen line emission in the far-red , 1992 .

[26]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[27]  Compact continuum radio sources in the Orion Nebula , 1987 .

[28]  Near-Infrared H2 and Associated O0 and C+ Emission from Dense Photon-dominated Regions , 1997 .

[29]  G. Mace,et al.  IGRINS SPECTROSCOPY OF CLASS I SOURCES: IRAS 03445+3242 AND IRAS 04239+2436 , 2016, 1605.07261.

[30]  A. Witt,et al.  The HD 200775/NGC 7023 complex - A question of reddening , 1980 .

[31]  K. Sellgren,et al.  Scattering of infrared radiation by dust in NGC 7023 and NGC 2023 , 1992 .

[32]  Jaejun Lee plp: Version 2.0 , 2015 .

[33]  I. Gatley,et al.  Infrared spectroscopy of interstellar molecular hydrogen - decomposition of thermal and fluorescent components , 1989 .

[34]  ROTATIONALLY WARM MOLECULAR HYDROGEN IN THE ORION BAR , 2009, 0906.2310.

[35]  Jeong-Yeol Han,et al.  Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer) , 2014, Astronomical Telescopes and Instrumentation.

[36]  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[37]  W. Latter,et al.  A Butterfly in the Making: Revealing the Near-Infrared Structure of Hubble 12 , 1995, astro-ph/9512167.

[38]  M. Harwit,et al.  Infrared Space Observatory Observations of Molecular Hydrogen in HH 54:Measurement of a Nonequilibrium Ratio of Ortho- to Para-H2 , 1998 .

[39]  Daniel T. Jaffe,et al.  Comprehensive data reduction package for the Immersion GRating INfrared Spectrograph: IGRINS , 2013 .

[40]  R. Lupu,et al.  SPITZER MAPPING OF POLYCYCLIC AROMATIC HYDROCARBON AND H2 FEATURES IN PHOTODISSOCIATION REGIONS , 2010 .

[41]  T. Geballe,et al.  Molecular hydrogen line ratios in four regions of shock-excited gas , 1989 .

[42]  K. Sellgren Ultraviolet-pumped Infrared Fluorescent Molecular Hydrogen Emission in Reflection Nebulae , 1986 .

[43]  In-Soo Yuk,et al.  THREE-DIMENSIONAL SHOCK STRUCTURE OF THE ORION KL OUTFLOW WITH IGRINS , 2016, 1610.09459.

[44]  T. Geballe,et al.  Near-IR Fluorescent Molecular Hydrogen Emission from NGC 2023 , 1998, Publications of the Astronomical Society of Australia.

[45]  W. D. Watson,et al.  The translational and rotational energy of hydrogen molecules after recombination on interstellar grains , 1978 .

[46]  I. Gatley,et al.  The molecular hydrogen emission associated with the Orion bright bar , 1985 .

[47]  A. Sternberg,et al.  The infrared response of molecular hydrogen gas to ultraviolet radiation: high-density regions , 1989 .

[48]  M. Mountain,et al.  Pure fluorescent H2 emission from Hubble 12 , 1993 .

[51]  Near-Infrared Spectroscopy of Molecular Filaments in the Reflection Nebula NGC 7023 , 1997, astro-ph/9702091.

[52]  W. Duley,et al.  The formation of interstellar H2 on amorphous silicate grains , 1986 .

[53]  C. Joblin,et al.  Evaporating very small grains as tracers of the UV radiation field in photo-dissociation regions , 2012, 1204.4669.

[54]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[55]  W. Cochran,et al.  HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722 , 2015, 1505.03206.

[56]  In-Soo Yuk,et al.  THE CHEMICAL COMPOSITIONS OF VERY METAL-POOR STARS HD 122563 AND HD 140283: A VIEW FROM THE INFRARED , 2016, 1601.02450.

[57]  T. Mouschovias,et al.  The magnetic flux problem and ambipolar diffusion during star formation: one-dimensional collapse. II: Results , 1985 .

[58]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[59]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[60]  I. Gatley,et al.  Level population and para/ortho ratio of fluorescent H2 in NGC 2023 , 1987 .

[61]  A. Abergel,et al.  Excitation of H2 in photodissociation regions as seen by Spitzer , 2010, 1012.5324.

[62]  Western Michigan University,et al.  DISCOVERY OF RUBIDIUM, CADMIUM, AND GERMANIUM EMISSION LINES IN THE NEAR-INFRARED SPECTRA OF PLANETARY NEBULAE , 2016, 1602.03188.

[63]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[64]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[65]  G. Ferland,et al.  Molecular Hydrogen in Star-forming Regions: Implementation of its Microphysics in CLOUDY , 2005, astro-ph/0501485.

[66]  J. Rho,et al.  SPITZER OBSERVATIONS OF MOLECULAR HYDROGEN IN INTERACTING SUPERNOVA REMNANTS , 2009, 0901.1622.

[67]  H2 Pure Rotational Lines in the Orion Bar , 2005, astro-ph/0506003.

[68]  M. Luhman,et al.  Near-Infrared Spectroscopy of Photodissociation Regions: The Orion Bar and Orion S , 1998, astro-ph/9801009.

[69]  S. Pak,et al.  FLUX CALIBRATION METHOD OF SLIT SPECTROMETER FOR EXTENDED SOURCES , 2006 .

[70]  A. Chrysostomou,et al.  Physical conditions in photodissociation regions: M17 northern bar , 1993 .

[71]  In-Soo Yuk,et al.  IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234 , 2016, 1601.03127.

[72]  Jae Sok Oh,et al.  Excitation of Molecular Hydrogen in the Orion Bar PhotodissociationRegion from a Deep Near-infrared IGRINS Spectrum , 2017 .

[73]  In-Soo Yuk,et al.  Preliminary design of IGRINS (Immersion GRating INfrared Spectrograph) , 2010, Astronomical Telescopes + Instrumentation.

[74]  G. Wade,et al.  Characterization of the magnetic field of the Herbig Be star HD 200775 , 2007, 0712.1746.

[75]  K. Gordon,et al.  The Excitation of Extended Red Emission: New Constraints on Its Carrier from Hubble Space Telescope Observations of NGC 7023 , 2005, astro-ph/0509352.

[76]  A. Tielens,et al.  Photodissociation regions. II. A model for the Orion photodissociation region. , 1985 .