Differential-phase-shift quantum key distribution

A novel type of quantum key distribution (QKD) protocol called differential-phase-shift (DPS) QKD is described. It utilizes a weak coherent pulse train instead of individual photons as in conventional QKD

[1]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[2]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[3]  Hiroki Takesue,et al.  Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs∕InP avalanche photodiode , 2007 .

[4]  Hiroki Takesue,et al.  100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. , 2006, Optics express.

[5]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[6]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[7]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[8]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[9]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[10]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.

[11]  Kyo Inoue,et al.  Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs. , 2007, Optics letters.

[12]  J. Rarity,et al.  Single photon interference in 10 km long optical fibre interferometer , 1993 .

[13]  T. Honjo,et al.  Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. , 2004, Optics letters.

[14]  Pascal Baldi,et al.  High-quality asynchronous heralded single-photon source at telecom wavelength , 2004 .

[15]  N. Namekata,et al.  800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. , 2006, Optics express.

[16]  Hoi-Kwong Lo,et al.  Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states , 2007, Quantum Inf. Comput..

[17]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[20]  A Karlsson,et al.  Experiments on long wavelength (1550 nm) "plug and play" quantum cryptography systems. , 1999, Optics express.

[21]  Toyohiro Tsurumaru Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol , 2007 .

[22]  Kyo Inoue,et al.  Differential-phase-shift quantum key distribution , 2002, 2006 Digest of the LEOS Summer Topical Meetings.

[23]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[24]  C. G. Peterson,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[25]  Kyo Inoue,et al.  Quantum Cryptography with a Photon Turnstile Device , 2002 .

[26]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[27]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[28]  A Trifonov,et al.  Secure communication with a heralded single-photon source , 2005 .

[29]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[30]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[31]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[32]  Richard J. Hughes,et al.  Quantum key distribution over a 48 km optical fibre network , 1999, quant-ph/9904038.

[33]  V. Scarani,et al.  Towards practical and fast Quantum Cryptography , 2004, quant-ph/0411022.

[34]  Masato Koashi,et al.  Simple and efficient quantum key distribution with parametric down-conversion. , 2007, Physical review letters.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[37]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[38]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[39]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[40]  Masato Koashi,et al.  Unconditionally secure key distribution based on two nonorthogonal states. , 2003, Physical review letters.

[41]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[42]  Akio Yoshizawa,et al.  10.5 km Fiber-Optic Quantum Key Distribution at 1550 nm with a Key Rate of 45 kHz , 2004 .

[43]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[44]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[45]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[46]  S. N. Molotkov CONFERENCES AND SYMPOSIA: Quantum cryptography and V A Kotel'nikov's one-time key and sampling theorems , 2006 .

[47]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[48]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[49]  Kyo Inoue,et al.  Quantum key distribution using entangled-photon trains with no basis selection , 2006 .

[50]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[51]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[52]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[53]  H. Takesue,et al.  Differential Phase Shift Quantum Key Distribution Using 1.3-µm Up-Conversion Detectors , 2006 .

[54]  University of Cambridge,et al.  Quantum key distribution using a triggered quantum dot source emitting near 1.3μm , 2007, 0710.0565.

[55]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[56]  M. Fejer,et al.  Differential phase shift quantum key distribution experiment over 105 km fibre , 2005, quant-ph/0507110.

[57]  Yoshihisa Yamamoto,et al.  Differential-phase-shift quantum key distribution using coherent light , 2003 .

[58]  Nicolas Gisin,et al.  Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography , 2008 .

[59]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[60]  Yoshihisa Yamamoto,et al.  Security aspects of quantum key distribution with sub-Poisson light , 2002 .

[61]  Kyo Inoue,et al.  Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack , 2005 .

[62]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[63]  Yoshihisa Yamamoto,et al.  Security of differential-phase-shift quantum key distribution against individual attacks , 2005, quant-ph/0508112.