Recent Advances in Remote Sensing Change Detection – A Review

Change detection is a key methodology in remote sensing. Despite numerous important papers dedicated to this topic no comprehensive review of the subject currently exists. Most existing reviews are limited to certain fields of application or are simply no longer current. Here, we provide an overview of the most important algorithms used for change detection and their development and refinement through time. Change detection cannot be considered as a mere algorithm. We thus describe all of the steps necessary to perform change detection as part of a process chain. We also show how such a change detection process chain may be adapted to specific individual requirements. The labeling of changes is recognized as a basic part of this process. Three change labeling categories are introduced: (1) pre-change extraction labeling, (2) concurrent labeling, and (3) post-change extraction labeling. Methods developed specifically for use with synthetic aperture radar (SAR) data are a focus of this review. SAR data provide information compatible with data produced by optical sensors, but also often require specialized processing techniques and are useful within a unique field of application. An examination of time series analysis methods is also included in this review. To date, these techniques have not been considered in reviews, but the increasing availability of remote sensing data as well as recent advances in remote sensing change detection make it essential that they are included here. Although not exhaustive, this review is intended to provide a comprehensive overview of well established change detection methods as well as recent advances in this field.

[1]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[2]  M. Wulder,et al.  Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data , 2011 .

[3]  Rob J Hyndman,et al.  Phenological change detection while accounting for abrupt and gradual trends in satellite image time series , 2010 .

[4]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[5]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[7]  Prashanth Reddy Marpu,et al.  Change detection using the object features , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[9]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Lorenzo Bruzzone,et al.  An adaptive approach to reducing registration noise effects in unsupervised change detection , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  F. Leberl,et al.  Photogrammetric Aspects of Remote Sensing with Imaging Radar , 1983 .

[12]  T. L. Toan,et al.  Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data , 2007 .

[13]  Gunter Menz,et al.  From Algorithms to Processing Chains: A Review of Land Cover and Land Use Change Detection Methodologies , 2010 .

[14]  Warren B. Cohen,et al.  Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series , 2007 .

[15]  Marco Gianinetto,et al.  Rapid Response Flood Assessment Using Minimum Noise Fraction and Composed Spline Interpolation , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Sébastien Leprince,et al.  Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images , 2011, Journal of Glaciology.

[17]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[18]  J. Fry,et al.  Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods , 2009 .

[19]  Patrick Hostert,et al.  Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania , 2012 .

[20]  Patrick Bogaert,et al.  Object-based method for automatic forest change detection , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Thomas R. Allen,et al.  Application of Spherical Statistics to Change Vector Analysis of Landsat Data: Southern Appalachian Spruce–Fir Forests , 2000 .

[22]  Urs Wegmüller,et al.  Nonuniform Ground Motion Monitoring With TerraSAR-X Persistent Scatterer Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Peijun Shi,et al.  Detecting land-use/land-cover change in rural-urban fringe areas using extended change-vector analysis , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Lorenzo Bruzzone,et al.  A genetic expectation-maximization method for unsupervised change detection in multitemporal SAR imagery , 2009 .

[25]  D. Stow Reducing the effects of misregistration on pixel-level change detection , 1999 .

[26]  C. Homer,et al.  Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods , 2010 .

[27]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[28]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[29]  C. Werner,et al.  Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry , 2005 .

[30]  C. Jha,et al.  Digital change detection of forest conversion of a dry tropical Indian forest region , 1994 .

[31]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[32]  Paolo Gamba,et al.  Change Detection of Multitemporal SAR Data in Urban Areas Combining Feature-Based and Pixel-Based Techniques , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[33]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[34]  Allan Aasbjerg Nielsen,et al.  Visualization and unsupervised classification of changes in multispectral satellite imagery , 2006 .

[35]  Oliver Montenbruck,et al.  TerraSAR-X Precise Trajectory Estimation and Quality Assessment , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Patrick Bogaert,et al.  Forest change detection by statistical object-based method , 2006 .

[37]  Conghe Song,et al.  Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon , 2006 .

[38]  S. Leprince,et al.  Monitoring migration rates of an active subarctic dune field using optical imagery , 2009 .

[39]  Francesca Bovolo,et al.  A detail-preserving scale-driven approach to change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[40]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[41]  Joseph J. Luczkovich,et al.  Multispectral change vector analysis for monitoring coastal marine environments , 1992 .

[42]  Rick L. Lawrence,et al.  Calculating Change Curves for Multitemporal Satellite Imagery: Mount St. Helens 1980–1995 , 1999 .

[43]  J. Hill,et al.  Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands , 2003 .

[44]  Irmgard Niemeyer,et al.  Object-based Change Detection , 2011 .

[45]  Andrea Rinaldo,et al.  Sea level rise, hydrologic runoff, and the flooding of Venice , 2008 .

[46]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[47]  Jean Taboury,et al.  Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake , 1999 .

[48]  Fabio Rocca,et al.  Submillimeter Accuracy of InSAR Time Series: Experimental Validation , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[49]  A. Ferretti,et al.  Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge , 2008 .

[50]  J. Morisette,et al.  Accuracy Assessment Curves for Satellite-Based Change Detection , 2000 .

[51]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[52]  Peter Reinartz,et al.  Combined Edge Segment Texture Analysis for the Detection of Damaged Buildings in Crisis Areas , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[53]  S. Linden,et al.  Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians , 2008, Ecosystems.

[54]  Nicholas C. Coops,et al.  Assessing changes in forest fragmentation following infestation using time series Landsat imagery , 2010 .

[55]  R. Wynne,et al.  Identifying Revegetated Mines as Disturbance/Recovery Trajectories Using an Interannual Landsat Chronosequence , 2012 .

[56]  D. Mouat,et al.  Remote sensing techniques in the analysis of change detection , 1993 .

[57]  D. Roberts,et al.  Combining spectral and spatial information to map canopy damage from selective logging and forest fires , 2005 .

[58]  Marvin E. Bauer,et al.  Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features , 1994, IEEE Trans. Geosci. Remote. Sens..

[59]  C. H. Chen Image processing for remote sensing , 2007 .

[60]  Andreas Schmitt,et al.  Curvelet-based Change Detection on SAR Images for Natural Disaster Mapping , 2010 .

[61]  C. Woodcock,et al.  An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data , 1996 .

[62]  Jakub Langhammer,et al.  Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. , 2009 .

[63]  L. Polidori,et al.  Change detection in radar images: methods and operational constraints , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[64]  Liming Jiang,et al.  Urban Change Detection Based on Coherence and Intensity Characteristics of SAR Imagery , 2008 .

[65]  Lorenzo Bruzzone,et al.  An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[66]  William J. Volchok,et al.  Radiometric scene normalization using pseudoinvariant features , 1988 .

[67]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[68]  D. Lu,et al.  Change detection techniques , 2004 .

[69]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[71]  J. R. Jensen,et al.  Inland wetland change detection using aircraft MSS data , 1987 .

[72]  Gabriel Vasile,et al.  Monitoring Temperate Glacier Displacement by Multi-Temporal TerraSAR-X Images and Continuous GPS Measurements , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[73]  Patrick Bogaert,et al.  Tropical forest monitoring by object-based change detection : towards an automated method in an operational perspective , 2006 .

[74]  A. Milne,et al.  Change Direction Analysis Using Landsat Imagery: A Review Of Methodology , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[75]  Giles M. Foody,et al.  The impact of imperfect ground reference data on the accuracy of land cover change estimation , 2009 .

[76]  Jian Yang,et al.  Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis , 2012 .

[77]  Lorenzo Bruzzone,et al.  Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[78]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[79]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[80]  M. Herold,et al.  Near real-time disturbance detection using satellite image time series , 2012 .

[81]  Francesca Bovolo,et al.  Detection of Land-Cover Transitions in Multitemporal Remote Sensing Images With Active-Learning-Based Compound Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Rafael Wiemker,et al.  An Iterative Spectral-Spatial Bayesian Labeling Approach for Unsupervised Robust Change Detection on Remotely Sensed Multispectral Imagery , 1997, CAIP.

[83]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[84]  Urs Wegmüller,et al.  JERS SAR interferometry for land subsidence monitoring , 2003, IEEE Trans. Geosci. Remote. Sens..

[85]  Francesca Bovolo,et al.  A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[86]  R. D. Johnson,et al.  Change vector analysis: A technique for the multispectral monitoring of land cover and condition , 1998 .

[87]  Fernando Pérez-Cabello,et al.  Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images , 2008 .

[88]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[89]  O. Viedma,et al.  Modeling rates of ecosystem recovery after fires by using landsat TM data , 1997 .

[90]  R. Nelson Detecting forest canopy change due to insect activity using Landsat MSS , 1983 .

[91]  Allan Aasbjerg Nielsen,et al.  Kernel principal component and maximum autocorrelation factor analyses for change detection , 2009, Remote Sensing.

[92]  Sébastien Leprince,et al.  Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[93]  David G. Vaughan,et al.  Widespread Acceleration of Tidewater Glaciers on the Antarctic Peninsula , 2007 .

[94]  W. Malila Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat , 1980 .

[95]  S. Goward,et al.  Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm , 2006 .

[96]  Richard R. Irish,et al.  Landsat 7 automatic cloud cover assessment , 2000, SPIE Defense + Commercial Sensing.

[97]  Yeqiao Wang,et al.  Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects , 2009 .

[98]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[99]  Thuy Le Toan,et al.  Multitemporal ERS SAR analysis applied to forest mapping , 2000, IEEE Trans. Geosci. Remote. Sens..

[100]  Darrel L. Williams,et al.  Landsat: Yesterday, Today, and Tomorrow , 2006 .

[101]  Kenneth W. Hudnut,et al.  Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico , 2011 .

[102]  Thomas Udelhoven,et al.  Dryland observation at local and regional scale - comparison of Landsat TM/ETM+ and NOAA AVHRR time series. , 2010 .

[103]  P. E. Anuta,et al.  Change detection in coastal zone environments , 1977 .

[104]  Samuel N. Goward,et al.  Landsat 7's long-term acquisition plan — an innovative approach to building a global imagery archive , 2001 .

[105]  M. Ridd,et al.  A Comparison of Four Algorithms for Change Detection in an Urban Environment , 1998 .

[106]  Philip J. Howarth,et al.  Procedures for change detection using Landsat digital data , 1981 .

[107]  Curtis E. Woodcock,et al.  Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality , 1994 .

[108]  R. Guthrie,et al.  The Land-cover Change Mapper (LCM) and its application to timber harvest monitoring in Western Canada. , 2009 .

[109]  Tung Fung,et al.  An Assessment Of TM Imagery For Land-cover Change Detection , 1990 .

[110]  Warren B. Cohen,et al.  A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests , 2011 .

[111]  A. Rango,et al.  Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico , 2004 .

[112]  Qiming Zhou,et al.  Accuracy assessment on multi‐temporal land‐cover change detection using a trajectory error matrix , 2009 .

[113]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[114]  G. Foody Assessing the accuracy of land cover change with imperfect ground reference data , 2010 .

[115]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[116]  P. Gong,et al.  Land-use/land-cover change detection using improved change-vector analysis , 2003 .

[117]  Allan Aasbjerg Nielsen,et al.  Automatic change detection in RapidEye data using the combined MAD and kernel MAF methods , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[118]  Lorenzo Bruzzone,et al.  An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images , 2002, IEEE Trans. Image Process..

[119]  Patrick Hostert,et al.  Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate , 2011 .

[120]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[121]  P. V. Oort Interpreting the change detection error matrix , 2007 .

[122]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[123]  C. Yonezawa,et al.  Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-nanbu earthquake , 2001 .

[124]  F. Morari,et al.  Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis , 2012 .

[125]  Chengquan Huang,et al.  Automated masking of cloud and cloud shadow for forest change analysis using Landsat images , 2010 .

[126]  Fionn Murtagh,et al.  Digital change detection with the aid of multiresolution wavelet analysis , 2001 .

[127]  Darrel L. Williams,et al.  Landsat sensor performance: history and current status , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[128]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[129]  Deming Zhao,et al.  Evaluation of the ERS Scatterometer-Derived Soil Water Index to Monitor Water Availability and Precipitation Distribution at Three Different Scales in China , 2008 .

[130]  K. K. Mayo,et al.  Monitoring land-cover change by principal component analysis of multitemporal Landsat data. , 1980 .

[131]  S. Ingebritsen,et al.  Principal components analysis of multitemporal image pairs , 1985 .

[132]  Peng Gong,et al.  Registration-noise reduction in difference images for change detection , 1992 .

[133]  Fabio Del Frate,et al.  Monitoring Urban Land Cover in Rome, Italy, and Its Changes by Single-Polarization Multitemporal SAR Images , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[134]  M. Nellis,et al.  Seasonal variation of heterogeneity in the tallgrass prairie : a quantitative measure using remote sensing , 1991 .

[135]  Michael J. Choate,et al.  Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus radiometric and geometric calibrations and corrections on landscape characterization , 2001 .

[136]  Rob J Hyndman,et al.  Detecting trend and seasonal changes in satellite image time series , 2010 .

[137]  Lorenzo Bruzzone,et al.  An advanced system for the automatic classification of multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Allan Aasbjerg Nielsen,et al.  Kernel principal component analysis for change detection , 2008, Remote Sensing.

[139]  W. Cohen,et al.  Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan , 2012 .

[140]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[141]  Geoffrey J. Hay,et al.  Object-based change detection , 2012 .

[142]  J. Hill,et al.  Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece , 2008 .

[143]  M. Gianinetto,et al.  Mapping Hurricane Katrina's widespread destruction in New Orleans using multisensor data and the normalized difference change detection (NDCD) technique , 2011 .

[144]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[145]  Chengquan Huang,et al.  Monitoring Landscape Change for LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[146]  A. Shepherd,et al.  Inland thinning of Pine Island Glacier, West Antarctica. , 2001, Science.

[147]  Achim Röder,et al.  Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain) , 2008 .

[148]  Scott L. Powell,et al.  Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972–2006 , 2007 .