3D Parallel Multigrid Methods for Real-Time Fluid Simulation

The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

[1]  Howard C. Elman,et al.  Analysis and Comparison of Geometric and Algebraic Multigrid for Convection-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[2]  Hehu Xie,et al.  A full multigrid method for nonlinear eigenvalue problems , 2015, 1502.04657.

[3]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, SIGGRAPH 2011.

[4]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[5]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[6]  Robert Strzodka,et al.  Accelerating Double Precision FEM Simulations with GPUs , 2011 .

[7]  K. Watanabe,et al.  Comparison of geometric and algebraic multigrid methods in edge-based finite-element analysis , 2005, IEEE Transactions on Magnetics.

[8]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[9]  Lydia Kronsjö,et al.  A note on the “nested iterations” method , 1975 .

[10]  Artem Napov,et al.  Algebraic analysis of V-cycle multigrid and aggregation-based two-grid methods , 2010 .

[11]  Artem Napov,et al.  Comparison of bounds for V-cycle multigrid , 2010 .

[12]  Frank Thiele,et al.  A modified full multigrid algorithm for the Navier-Stokes equations , 2007 .

[13]  Stephen F. McCormick,et al.  Smoothed aggregation multigrid for cloth simulation , 2015, ACM Trans. Graph..

[14]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[15]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[16]  Lydia Kronsjö,et al.  On the design of nested iterations for elliptic difference equations , 1972 .

[17]  M. M. Butt,et al.  A full multigrid solution of control-constrained Cauchy–Riemann optimal control problems , 2011, J. Num. Math..

[18]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[19]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[20]  Ronald Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, SIGGRAPH 2010.

[21]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[22]  Irad Yavneh,et al.  On Red-Black SOR Smoothing in Multigrid , 1996, SIAM J. Sci. Comput..