A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems

Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the particle swarm optimization (PSO) algorithm to improve the searching accuracy. The FPPSO algorithm is used to solve constrained optimization problems. Experimental results showed that the accuracy of finding the best solution and convergence speed performance of the proposed algorithm is significantly better compared to those achieved by the existing algorithms.

[1]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.

[2]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[3]  Natalio Krasnogor,et al.  Nature-inspired cooperative strategies for optimization , 2009 .

[4]  Xin-She Yang Harmony Search as a Metaheuristic Algorithm , 2009 .

[5]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[6]  Kusum Deep,et al.  A self-organizing migrating genetic algorithm for constrained optimization , 2008, Appl. Math. Comput..

[7]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[8]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[9]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[10]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[11]  Janez Brest,et al.  Large scale global optimization using self-adaptive differential evolution algorithm , 2010, IEEE Congress on Evolutionary Computation.

[12]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[13]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[14]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[15]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[16]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[17]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[18]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[19]  Leandro dos Santos Coelho,et al.  Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization , 2008, Expert Syst. Appl..

[20]  Francisco Herrera,et al.  Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems , 2011, Soft Comput..

[21]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[22]  Ioannis G. Tsoulos,et al.  Solving constrained optimization problems using a novel genetic algorithm , 2009, Appl. Math. Comput..

[23]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[24]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[25]  James N. Siddall,et al.  Analytical decision-making in engineering design , 1972 .

[26]  Gaige Wang,et al.  A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization , 2013, J. Appl. Math..

[27]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[28]  Mohammad Saleh Tavazoei,et al.  Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms , 2007, Appl. Math. Comput..

[29]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[30]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[31]  Peiliang Xu A hybrid global optimization method: the one-dimensional case , 2002 .

[32]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[33]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[34]  Antonio LaTorre,et al.  Hybrid evolutionary algorithms for large scale continuous problems , 2009, GECCO '09.

[35]  A. Ravindran,et al.  Engineering Optimization: Methods and Applications , 2006 .

[36]  Sabine Fenstermacher,et al.  Genetic Algorithms Data Structures Evolution Programs , 2016 .

[37]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[38]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[39]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[40]  R. J. Kuo,et al.  A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model , 2011 .

[41]  Zbigniew Michalewicz,et al.  Genetic AlgorithmsNumerical Optimizationand Constraints , 1995, ICGA.

[42]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[43]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[44]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[45]  David B. Fogel,et al.  A Comparison of Evolutionary Programming and Genetic Algorithms on Selected Constrained Optimization Problems , 1995, Simul..

[46]  Francisco Herrera,et al.  MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization , 2010, IEEE Congress on Evolutionary Computation.

[48]  G. McCormick,et al.  Selected applications of nonlinear programming , 1968 .

[49]  Natalio Krasnogor,et al.  Nature‐inspired cooperative strategies for optimization , 2009, Int. J. Intell. Syst..

[50]  Amir Hossein Gandomi,et al.  Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization , 2012, Comput. Math. Appl..

[51]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[52]  Jeng-Shyang Pan,et al.  An improved vector particle swarm optimization for constrained optimization problems , 2011, Inf. Sci..

[53]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[54]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[55]  Peiliang Xu A hybrid global optimization method: the multi-dimensional case , 2003 .

[56]  Jui-Yu Wu,et al.  Solving Constrained Global Optimization via Artificial Immune System , 2011, Int. J. Artif. Intell. Tools.

[57]  Jan Peters,et al.  Computational Intelligence: Principles, Techniques and Applications , 2007, Comput. J..

[58]  Isaac Siwale ON GLOBAL OPTIMIZATION , 2015 .

[59]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[60]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[61]  M. Mahdavi,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .

[62]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[63]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .