Sliding Window Persistence of Quasiperiodic Functions

Abstract. A function is called quasiperiodic if its fundamental frequencies are linearly independent over the rationals. With appropriate parameters, the sliding window point clouds of such functions can be shown to be dense in tori with dimension equal to the number of independent frequencies. In this paper, we develop theoretical and computational techniques to study the persistent homology of such sets. Specifically, we provide parameter optimization schemes for sliding windows of quasiperiodic functions, and present theoretical lower bounds on their Rips persistent homology. The latter leverages a recent persistent Künneth formula. The theory is illustrated via computational examples and an application to dissonance detection in music audio samples.

[1]  G. Gómez,et al.  A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples , 2010 .

[2]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[3]  Hamid Krim,et al.  Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.

[4]  Jose A. Perea Persistent homology of toroidal sliding window embeddings , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Matthew Berger,et al.  Topological Eulerian Synthesis of Slow Motion Periodic Videos , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[6]  H. Herzel,et al.  SUBHARMONICS, BIPHONATION, AND DETERMINISTIC CHAOS IN MAMMAL VOCALIZATION , 1998 .

[7]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[8]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[9]  L. V. Vela-Arevalo Time-frequency analysis based on wavelets for Hamiltonian systems , 2002 .

[10]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[11]  Michael Lin,et al.  Twisty Takens: a geometric characterization of good observations on dense trajectories , 2018, Journal of Applied and Computational Topology.

[12]  Helmut Bölcskei,et al.  Vandermonde Matrices with Nodes in the Unit Disk and the Large Sieve , 2017, Applied and Computational Harmonic Analysis.

[13]  N. B. Slater,et al.  Gaps and steps for the sequence nθ mod 1 , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[15]  I. Stewart,et al.  Algebraic Number Theory and Fermat's Last Theorem , 2015 .

[16]  Firas A. Khasawneh,et al.  Chatter Classification in Turning Using Machine Learning and Topological Data Analysis , 2018, IFAC-PapersOnLine.

[17]  Alexandros Nanopoulos,et al.  Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data , 2010, J. Mach. Learn. Res..

[18]  Paulo J. S. G. Ferreira,et al.  SUPERRESOLUTION, THE RECOVERY OF MISSING SAMPLES, AND VANDERMONDE MATRICES ON THE UNIT CIRCLE , 1999 .

[19]  H. Broer KAM theory: The legacy of Kolmogorov’s 1954 paper , 2004 .

[20]  Ismail Sahar,et al.  Super-Resolution , 2014, Encyclopedia of Biometrics.

[21]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[22]  Christopher J. Tralie,et al.  Ripser.py: A Lean Persistent Homology Library for Python , 2018, J. Open Source Softw..

[23]  Michal Adamaszek,et al.  The Vietoris-Rips complexes of a circle , 2015, ArXiv.

[24]  C L Webber,et al.  Dynamical assessment of physiological systems and states using recurrence plot strategies. , 1994, Journal of applied physiology.

[25]  Jacques Laskar,et al.  Frequency analysis for multi-dimensional systems: global dynamics and diffusion , 1993 .

[26]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[27]  J. Zbilut,et al.  Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. , 2002, Medical engineering & physics.

[28]  Jose A. Perea Topological Time Series Analysis , 2018, Notices of the American Mathematical Society.

[29]  Weixing,et al.  Quasiperiodic transition to chaos in a plasma. , 1993, Physical review letters.

[30]  Tomasz Kapitaniak,et al.  Complex Behaviour of a Quasiperiodically Forced Experimental System with Dry Friction , 1993 .

[31]  Jose A. Perea,et al.  Künneth Formulae in Persistent Homology , 2019, ArXiv.

[32]  Jose A. Perea,et al.  (Quasi)Periodicity Quantification in Video Data, Using Topology , 2017, SIAM J. Imaging Sci..

[33]  J. Pollack,et al.  Quasi-periodic climate changes on Mars: A review , 1982 .

[34]  Vin de Silva,et al.  The observable structure of persistence modules , 2014, 1405.5644.