暂无分享,去创建一个
[1] G. Gómez,et al. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples , 2010 .
[2] Ankur Moitra,et al. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.
[3] Hamid Krim,et al. Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.
[4] Jose A. Perea. Persistent homology of toroidal sliding window embeddings , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[5] Matthew Berger,et al. Topological Eulerian Synthesis of Slow Motion Periodic Videos , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).
[6] H. Herzel,et al. SUBHARMONICS, BIPHONATION, AND DETERMINISTIC CHAOS IN MAMMAL VOCALIZATION , 1998 .
[7] W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.
[8] E. Stein,et al. Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .
[9] L. V. Vela-Arevalo. Time-frequency analysis based on wavelets for Hamiltonian systems , 2002 .
[10] Steve Oudot,et al. Persistence stability for geometric complexes , 2012, ArXiv.
[11] Michael Lin,et al. Twisty Takens: a geometric characterization of good observations on dense trajectories , 2018, Journal of Applied and Computational Topology.
[12] Helmut Bölcskei,et al. Vandermonde Matrices with Nodes in the Unit Disk and the Large Sieve , 2017, Applied and Computational Harmonic Analysis.
[13] N. B. Slater,et al. Gaps and steps for the sequence nθ mod 1 , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Jose A. Perea,et al. Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..
[15] I. Stewart,et al. Algebraic Number Theory and Fermat's Last Theorem , 2015 .
[16] Firas A. Khasawneh,et al. Chatter Classification in Turning Using Machine Learning and Topological Data Analysis , 2018, IFAC-PapersOnLine.
[17] Alexandros Nanopoulos,et al. Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data , 2010, J. Mach. Learn. Res..
[18] Paulo J. S. G. Ferreira,et al. SUPERRESOLUTION, THE RECOVERY OF MISSING SAMPLES, AND VANDERMONDE MATRICES ON THE UNIT CIRCLE , 1999 .
[19] H. Broer. KAM theory: The legacy of Kolmogorov’s 1954 paper , 2004 .
[20] Ismail Sahar,et al. Super-Resolution , 2014, Encyclopedia of Biometrics.
[21] T. Apostol. Modular Functions and Dirichlet Series in Number Theory , 1976 .
[22] Christopher J. Tralie,et al. Ripser.py: A Lean Persistent Homology Library for Python , 2018, J. Open Source Softw..
[23] Michal Adamaszek,et al. The Vietoris-Rips complexes of a circle , 2015, ArXiv.
[24] C L Webber,et al. Dynamical assessment of physiological systems and states using recurrence plot strategies. , 1994, Journal of applied physiology.
[25] Jacques Laskar,et al. Frequency analysis for multi-dimensional systems: global dynamics and diffusion , 1993 .
[26] Jose A. Perea,et al. SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.
[27] J. Zbilut,et al. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. , 2002, Medical engineering & physics.
[28] Jose A. Perea. Topological Time Series Analysis , 2018, Notices of the American Mathematical Society.
[29] Weixing,et al. Quasiperiodic transition to chaos in a plasma. , 1993, Physical review letters.
[30] Tomasz Kapitaniak,et al. Complex Behaviour of a Quasiperiodically Forced Experimental System with Dry Friction , 1993 .
[31] Jose A. Perea,et al. Künneth Formulae in Persistent Homology , 2019, ArXiv.
[32] Jose A. Perea,et al. (Quasi)Periodicity Quantification in Video Data, Using Topology , 2017, SIAM J. Imaging Sci..
[33] J. Pollack,et al. Quasi-periodic climate changes on Mars: A review , 1982 .
[34] Vin de Silva,et al. The observable structure of persistence modules , 2014, 1405.5644.