Robust Building Scheme Design Optimization for Uncertain Performance Prediction

Design exploration is a vital part of the building design process that aims at identifying the best-performing design with regard to the requirements of the client and building regulations. Building performance simulation can support this “explorative” process, its potential however being restricted by the fact that all design parameters are subject to uncertainty. In addition, while the need for an efficient exploration of the design space has resulted in the integration of optimization into the design process, the majority of existing research treats uncertainty quantification and optimization as separate processes. Finally, candidate designs are commonly evaluated with respect to only one or two design criteria, while the multi-dimensionality of real-world problems calls for integrated design solutions that meet several – often-conflicting – objectives. A new approach is thus developed that aims to help designers identify robust Pareto-optimal solutions that satisfy several design criteria, while remaining optimal regardless of the uncertainty in boundary conditions. Through its implementation to a real-world case-study building, the novel approach is found to be able to identify optimum solutions that preserve their optimality over the entire range of uncertain performance scenarios.

[1]  Ruchi Choudhary,et al.  Optimum building energy retrofits under technical and economic uncertainty , 2013 .

[2]  Godfried Augenbroe,et al.  Analysis of uncertainty in building design evaluations and its implications , 2002 .

[3]  Gail Brager,et al.  Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55 , 2002 .

[4]  Weimin Wang,et al.  Applying multi-objective genetic algorithms in green building design optimization , 2005 .

[5]  Staf Roels,et al.  Probabilistic design and analysis of building performances: methodology and application example , 2014 .

[6]  Aris Tsangrassoulis,et al.  Algorithms for optimization of building design: A review , 2014 .

[7]  Norbert Lartigu,et al.  Knowledge and design , 2003 .

[8]  Michael J. Davies,et al.  Employing A Multi-Objective Robust Optimisation Method for Healthy And Low-Energy Dwelling Design in Delhi, India , 2015, Building Simulation Conference Proceedings.

[9]  John E. Mottershead,et al.  A review of robust optimal design and its application in dynamics , 2005 .

[10]  Jonathan A. Wright,et al.  Early And Detailed Design Stage Modelling using Passivhaus Design; What is the Difference in Predicted Building Performance? , 2015, Building Simulation Conference Proceedings.

[11]  Jlm Jan Hensen,et al.  Uncertainty analysis in building performance simulation for design support , 2011 .

[12]  Paul Strachan,et al.  Practical application of uncertainty analysis , 2001 .

[13]  Jonathan A. Wright,et al.  EXHAUSTIVE SEARCH: DOES IT HAVE A ROLE IN EXPLORATIVE DESIGN? , 2016 .

[14]  Christina J. Hopfe,et al.  Robust multi-criteria design optimization in building design , 2012 .

[15]  Philipp Geyer,et al.  Component-oriented decomposition for multidisciplinary design optimization in building design , 2009, Adv. Eng. Informatics.