Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys

[1]  Kewei Zhang,et al.  Effect of Si/B ratio on glass-forming ability, phase transitions and magnetic properties in (Fe40Ni40SixByCu1)0.97Nb0.03 alloys , 2020, Journal of Materials Science.

[2]  M. Enayati,et al.  Quantification of the anomalous crystallization and soft magnetic properties of Fe–Si–B–P–Cu (Nanomet) by isothermal calorimetry , 2020 .

[3]  Tao Zhang,et al.  Thermal, structural and soft magnetic properties of FeSiBPCCu alloys , 2020 .

[4]  C. Fan,et al.  Effects of the substitution of Si by P on crystallization behavior, soft magnetic properties and bending ductility of FeSiBCuPC alloys , 2020 .

[5]  B. Shen,et al.  High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties , 2020 .

[6]  F. Kong,et al.  High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys , 2019 .

[7]  Y. Yang,et al.  Amorphous–nanocrystalline alloys: fabrication, properties, and applications , 2019, Materials Today Advances.

[8]  Andoni Lasheras,et al.  Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems , 2019, Sensors and Actuators B: Chemical.

[9]  C. Chen,et al.  Phase transitions and magnetic properties of Fe30Co29Ni29Zr7B4Cu1 high-entropy alloys , 2019, Journal of Alloys and Compounds.

[10]  J. K. Chen,et al.  Influence of Ni substitution for B on crystallization behavior, microstructure and magnetic properties of FeBCu alloys , 2019, Journal of Magnetism and Magnetic Materials.

[11]  Hong Li,et al.  Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation , 2019, Fuel.

[12]  Piyush Sharma,et al.  Non-isothermal oxidation kinetics of nano-laminated Cr2AlC MAX phase , 2019, Journal of Alloys and Compounds.

[13]  T. Monson,et al.  Soft magnetic materials for a sustainable and electrified world , 2018, Science.

[14]  Y. Liu,et al.  Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials , 2018, Rare Metals.

[15]  S. Yi,et al.  Formation and Magnetic Properties of Nanocomposites in Rapidly Solidified Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) Ribbons , 2018, Metals and Materials International.

[16]  A. Aronin,et al.  Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass , 2018 .

[17]  Ranilson A Silva,et al.  Study of the dynamic of crystallization of an amorphous Fe40Ni40P14B6 ribbon through Johnson-Mehl-Avrami model , 2018 .

[18]  M. McHenry,et al.  Magnetic properties and crystallization kinetics of (Fe100 − xNix)80Nb4Si2B14 metal amorphous nanocomposites , 2018 .

[19]  Changqing Jin,et al.  Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses , 2018, Journal of Thermal Analysis and Calorimetry.

[20]  Piyush Sharma,et al.  Impact of CuS on the crystallization kinetics of Na 2 S-P 2 S 5 glasses , 2017 .

[21]  Chun-tao Chang,et al.  Effect of P on glass forming ability, magnetic properties and oxidation behavior of FeSiBP amorphous alloys , 2017 .

[22]  S. Vasiliev,et al.  Identification of the onset crystallization time in metallic glasses at isothermal conditions , 2017 .

[23]  Hong Li,et al.  Understanding the Co-Pyrolysis Behavior of Indonesian Oil Sands and Corn Straw , 2017 .

[24]  A. Emdadi,et al.  Microstructural dependence of magnetic and magnetostrictive properties in Fe–19 at% Ga , 2016, Rare Metals.

[25]  J. Eckert,et al.  Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses , 2016 .

[26]  V. Pavlović,et al.  Thermally induced crystallization of amorphous Fe40Ni40P14B6 alloy , 2015 .

[27]  Kewei Zhang,et al.  Magnetostrictive particle based biosensors for in situ and real‐time detection of pathogens in water , 2014, Biotechnology and bioengineering.

[28]  Feida Chen,et al.  Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16−xSixCu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons , 2014 .

[29]  B. Yan,et al.  Non-isothermal nanocrystallization kinetics study on (Fe0.8Ni0.15M0.05)78Si8B14 (M = Nb, Ta, W) amorphous alloys , 2013 .

[30]  Jili Wu,et al.  Non-isothermal crystallization kinetics and glass-forming ability of Cu–Zr–Ti–In bulk metallic glasses , 2013 .

[31]  Feng Liu,et al.  Structural modification and phase transformation kinetics: crystallization of amorphous Fe40Ni40P14B6 eutectic alloy , 2013, Journal of Materials Science.

[32]  Kai Xu,et al.  Comparative study of non-isothermal crystallization kinetics between Fe80P13C7 bulk metallic glass and melt-spun glassy ribbon , 2012 .

[33]  Paul R. Ohodnicki,et al.  Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications , 2012, JOM.

[34]  Tao Zhang,et al.  Effect of B to P concentration ratio on glass-forming ability and soft-magnetic properties in [(Fe0.5Ni0.5)0.78B0.22−xPx]97Nb3 glassy alloys , 2012 .

[35]  Zhonghua Zhang,et al.  Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys , 2010 .

[36]  R. Ramanujan,et al.  Nanocrystalline structures obtained by the crystallization of an amorphous Fe40Ni38B18Mo4 soft magnetic alloy , 2006 .

[37]  D. Miracle The efficient cluster packing model : An atomic structural model for metallic glasses , 2006 .

[38]  B. Yan,et al.  Nanocrystallization kinetics of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy , 2006 .

[39]  R. Ramanujan,et al.  Nanocrystallization Behavior of Fe40Ni38B18Mo4 Soft Magnetic Alloy , 2005 .

[40]  Ryusuke Hasegawa,et al.  Applications of amorphous magnetic alloys , 2004 .

[41]  Yulai Gao,et al.  Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region , 2003 .

[42]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[43]  S. Ranganathan,et al.  The three activation energies with isothermal transformations: applications to metallic glasses , 1981 .

[44]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[45]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[46]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[47]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .