Simple Perturbation Scheme to Consider Uncertainty in Equations of State for the Use in Process Simulation

For use in sensitivity studies and robust optimization, uncertainties in thermodynamic models have to be considered in simulations. Instead of using less vivid confidence intervals of the models’ fitting parameters, this work proposes a perturbation scheme for the fugacity coefficients in the liquid phase which can be applied to any thermodynamic model including equations of state. The perturbation is tuned via physically vivid and comprehensible parameters which have a direct relation to experimental uncertainties. Perturbations of pure component properties and mixture properties are separately accessible. After giving the theoretical framework of the perturbation scheme, the benefits of the approach are demonstrated using process simulation examples.

[1]  Sebastian Zeck Einfluß von thermophysikalischen Stoffdaten auf die Auslegung und den Betrieb von Destillationskolonnen , 1990 .

[2]  Wallace B. Whiting,et al.  SENSITIVITY AND UNCERTAINTY OF PROCESS DESIGNS TO THERMODYNAMIC MODEL PARAMETERS: A MONTE CARLO APPROACH , 1993 .

[3]  F. W. Melpolder,et al.  The Isolation and Physical Properties of the Diisopropylbenzenes , 1948 .

[4]  Wallace B. Whiting,et al.  Sensitivity and uncertainty analysis of heat-exchanger designs to physical properties estimation , 2001 .

[5]  Wallace B. Whiting,et al.  Incorporating uncertainty in chemical process design for environmental risk assessment , 2004 .

[6]  Frederick D. Rossini,et al.  Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons , 1945 .

[7]  Michael Bortz,et al.  Minimizing the Impact of Uncertain Model Parameters on Process Design , 2015 .

[8]  Wallace B. Whiting,et al.  Effect of uncertainties in thermodynamic data and model parameters on calculated process performance , 1993 .

[9]  Paul M. Mathias,et al.  Sensitivity of Process Design to Phase Equilibrium—A New Perturbation Method Based Upon the Margules Equation , 2014 .

[10]  Paul M. Mathias,et al.  Effect of VLE uncertainties on the design of separation sequences by distillation – Study of the benzene–chloroform–acetone system☆ , 2016 .

[11]  Andre Peneloux,et al.  A consistent correction for Redlich-Kwong-Soave volumes , 1982 .

[12]  S. Verevkin Thermochemical properties of iso-propylbenzenes , 1998 .

[13]  Hans Hasse,et al.  Sensitivity study for the rate-based simulation of the reactive absorption of CO2 , 2011 .

[14]  Michael Bortz,et al.  INES – An Interface Between Experiments and Simulation to Support the Development of Robust Process Designs , 2015 .

[15]  Wallace B. Whiting,et al.  Effects of Uncertainties in Thermodynamic Data and Models on Process Calculations , 1996 .

[16]  Debangsu Bhattacharyya,et al.  Uncertainty quantification of property models: Methodology and its application to CO2‐loaded aqueous MEA solutions , 2015 .

[17]  S. Madhavan,et al.  Vapour—liquid equilibria of the system cyclohexane—methanol: ebulliometric method , 1966 .

[18]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[19]  Paul M. Mathias,et al.  Quantitative Evaluation of the Effect of Uncertainty in Property Models on the Simulated Performance of Solvent-Based CO2-Capture☆ , 2014 .

[20]  S. Macchietto,et al.  Exact determination of process sensitivity to physical properties , 1986 .

[21]  Weiyang Fei,et al.  Solubility of CO2 in Alcohols, Glycols, Ethers, and Ketones at High Pressures from (288.15 to 318.15) K , 2011 .