Modelling the dynamic physical properties of vulcanised polymer models by molecular dynamics simulations and machine learning

[1]  Yingqing Guo,et al.  Mechanical and damping properties analyses of small molecular modifiers/nitrile‐butadiene rubber composite: molecular dynamics simulation , 2022, Macromolecular Theory and Simulations.

[2]  W. Xie,et al.  The role of non-rubber components acting as endogenous antioxidants on thermal-oxidative aging behavior of natural rubber , 2022, Polymer Testing.

[3]  P. Hopkins,et al.  Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon , 2022, npj Computational Materials.

[4]  Yaqing Liu,et al.  Improved mechanical, thermal conductivity and low heat build-up properties of natural rubber composites with nano-sulfur modified graphene oxide/silicon carbide , 2022, Ceramics International.

[5]  Jincheng Mao,et al.  Evaluation of temperature resistance of non chemical crosslinked double-tailed hydrophobically associating polymer fracturing fluid , 2022, Reactive and Functional Polymers.

[6]  Zheng Peng,et al.  New insight into naturally occurring network and entanglements induced strain behavior of vulcanized natural rubber , 2022, Polymer.

[7]  S. Kawahara,et al.  Preparation and characterization of vulcanized natural rubber with high stereoregularity , 2021, Polymer.

[8]  Chuanhui Xu,et al.  Endeavour to Balance Mechanical Properties and Self-healing of Nature Rubber by Increasing Covalent Crosslinks via a Controlled Vulcanization , 2021, European Polymer Journal.

[9]  Yunlong Li,et al.  Molecular dynamics study on the reinforcing effect of incorporation of graphene/carbon nanotubes on the mechanical properties of swelling rubber , 2021, Polymer Testing.

[10]  J. Regenstein,et al.  Thermoplastic mung bean starch/natural rubber/sericin blends for improved oil resistance. , 2021, International journal of biological macromolecules.

[11]  Yapei Wang,et al.  An Ultra‐Low‐Temperature Elastomer with Excellent Mechanical Performance and Solvent Resistance , 2021, Advanced materials.

[12]  W. Dierkes,et al.  Effect of SBR/BR elastomer blend ratio on filler and vulcanization characteristics of silica filled tire tread compounds , 2021, Polymer Testing.

[13]  K. Sau,et al.  Thermophysical properties of graphene and hexagonal boron nitride nanofluids: A comparative study by molecular dynamics , 2021 .

[14]  C. Breitkopf,et al.  Thermal Conductivities of Crosslinked Polyisoprene and Polybutadiene from Molecular Dynamics Simulations , 2021, Polymers.

[15]  Jianguo Wang,et al.  Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation , 2020 .

[16]  H. Otsuka,et al.  Polybutadiene rubbers with urethane linkages prepared by a dynamic covalent approach for tire applications , 2020, Polymer.

[17]  Zhao-Dong Xu,et al.  Experimental and Theoretical Study of High-Energy Dissipation-Viscoelastic Dampers Based on Acrylate-Rubber Matrix , 2020 .

[18]  Yongsheng Guan,et al.  Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation , 2020, Frontiers of Structural and Civil Engineering.

[19]  K. Nakajima,et al.  Nanodiamond Glass with Rubber Bond in Natural Rubber , 2020, Advanced Functional Materials.

[20]  Yanchan Wei,et al.  Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics , 2019, Polymer.

[21]  Y. Koyama,et al.  Predicting Materials Properties with Little Data Using Shotgun Transfer Learning , 2019, ACS central science.

[22]  Stephen Wu,et al.  Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm , 2019, npj Computational Materials.

[23]  Anil K. Bhowmick,et al.  An Insight into molecular structure and properties of flexible amorphous polymers: A molecular dynamics simulation approach , 2019, Journal of Applied Polymer Science.

[24]  Yun-Xiang Xu,et al.  Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. , 2018, Angewandte Chemie.

[25]  P. Iedema,et al.  Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach. , 2018, Soft matter.

[26]  P. Khalatur,et al.  Fully atomistic molecular dynamics simulation of nanosilica-filled crosslinked polybutadiene , 2016 .

[27]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[28]  Z. Jia,et al.  A method to improve the mechanical performance of styrene-butadiene rubber via vulcanization accelerator modified silica , 2015 .

[29]  L. Matějka,et al.  The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties. , 2015, Soft Matter.

[30]  Alejandro Strachan,et al.  Molecular scale simulations on thermoset polymers: A review , 2015 .

[31]  T. Ohara,et al.  Effect of crosslink formation on heat conduction in amorphous polymers , 2013 .

[32]  Christian Burger,et al.  Crystal and Crystallites Structure of Natural Rubber and Synthetic cis- 1,4-Polyisoprene by a New Two Dimensional Wide Angle X‑ray Diffraction Simulation Method. I. Strain-Induced Crystallization , 2013 .

[33]  Zhao-Dong Xu,et al.  Model, tests and application design for viscoelastic dampers , 2011 .

[34]  Mark F. Horstemeyer,et al.  Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene , 2010 .

[35]  Zhonglin Luo,et al.  Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends , 2010 .

[36]  Shinzo Kohjiya,et al.  Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue , 2006 .

[37]  L. Bokobza The Reinforcement of Elastomeric Networks by Fillers , 2004 .

[38]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon , 2004 .

[39]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .

[40]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[41]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[42]  N. Moe,et al.  Molecular dynamics computer simulation of local dynamics in polyisoprene melts , 1996 .

[43]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[44]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[45]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[46]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[47]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .