Analysis of potential field data in the wavelet domain
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] A. S. Eve. APPLIED GEOPHYSICS. , 1928, Science.
[3] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[4] H. Fédérer. Geometric Measure Theory , 1969 .
[5] M. Al-Chalabi,et al. SOME STUDIES RELATING TO NONUNIQUENESS IN GRAVITY AND MAGNETIC INVERSE PROBLEMS , 1971 .
[6] D. Teskey,et al. A system for rapid digital aeromagnetic interpretation , 1970 .
[7] H. Naudy. AUTOMATIC DETERMINATION OF DEPTH ON AEROMAGNETIC PROFILES , 1971 .
[8] D. T. Thompson,et al. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data , 1982 .
[9] A Stripping Filter For Potential-field Data , 1985 .
[10] J. C. Mareschal. Inversion of potential field data in Fourier transform domain , 1985 .
[11] Robert W. Simpson,et al. Approximating edges of source bodies from magnetic or gravity anomalies , 1986 .
[12] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] B. Jacobsen. A case for upward continuation as a standard separation filter for potential-field maps , 1987 .
[14] Lindrith Cordell,et al. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data , 1987 .
[15] Robert Hummel,et al. Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..
[16] Kenneth R. Piech,et al. Fingerprints and fractal terrain , 1990 .
[17] P. Tchamitchian,et al. Regularite locale de la fonction “non-differentiable” de Riemann , 1990 .
[18] Stéphane Mallat,et al. Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.
[19] Stéphane Mallat,et al. Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Stéphane Mallat,et al. Characterization of Self-Similar Multifractals with Wavelet Maxima , 1994 .
[21] Gerald Kaiser,et al. A Friendly Guide to Wavelets , 1994 .
[22] R. Blakely. Potential theory in gravity and magnetic applications , 1996 .
[23] Richard J. Blakely. Potential Theory in Gravity and Magnetic Applications: The Potential , 1995 .
[24] F. Boschetti,et al. Inversion of seismic refraction data using genetic algorithms , 1996 .
[25] Matthias Holschneider,et al. Wavelet analysis of potential fields , 1997 .
[26] Stéphane Jaffard,et al. Multifractal formalism for functions part I: results valid for all functions , 1997 .