Implementing and Evaluating Provers for First-order Modal Logics

While there is a broad literature on the theory of first-order modal logics, little is known about practical reasoning systems for them. This paper presents several implementations of fully automated theorem provers for first-order modal logics based on different proof calculi. Among these calculi are the standard sequent calculus, a prefixed tableau calculus, an embedding into simple type theory, an instance-based method, and a prefixed connection calculus. All implementations are tested and evaluated on the new QMLTP problem library for first-order modal logic.

[1]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[2]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[3]  Christoph Benzmüller,et al.  Combining and automating classical and non-classical logics in classical higher-order logics , 2011, Annals of Mathematics and Artificial Intelligence.

[4]  W. V. Quine Review: Ruth C. Barcan, A Functional Calculus of First Order Based on Strict Implication , 1946 .

[5]  James W. Garson Unifying Quantified Modal Logic , 2005, J. Philos. Log..

[6]  Bernhard Beckert,et al.  Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.

[7]  Christoph Kreitz,et al.  The ILTP Problem Library for Intuitionistic Logic , 2007, Journal of Automated Reasoning.

[8]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[9]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[10]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[11]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[12]  Jens Otten Implementing Connection Calculi for First-order Modal Logics , 2012, IWIL@LPAR.

[13]  Geoff Sutcliffe,et al.  Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure , 2010, J. Formaliz. Reason..

[14]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[15]  Bernhard Beckert,et al.  leanTAP: Lean tableau-based deduction , 1995, Journal of Automated Reasoning.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Jens Otten Restricting backtracking in connection calculi , 2010, AI Commun..

[18]  Jens Otten,et al.  leanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions) , 2008, IJCAR.

[19]  Richard L. Mendelsohn,et al.  First-Order Modal Logic , 1998 .

[20]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[21]  R. Goodstein FIRST-ORDER LOGIC , 1969 .

[22]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[23]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[24]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[25]  Virginie Thion,et al.  A General Theorem Prover for Quantified Modal Logics , 2002, TABLEAUX.

[26]  Jens Otten,et al.  Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic , 2005, TABLEAUX.

[27]  Geoff Sutcliffe The CADE-23 Automated Theorem Proving System Competition - CASC-23 , 2012, AI Commun..

[28]  Jens Otten,et al.  The QMLTP Problem Library for First-Order Modal Logics , 2012, IJCAR.